Hartmut Wiggers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1671186/publications.pdf

Version: 2024-02-01

76326 123424 5,315 188 40 61 citations h-index g-index papers 193 193 193 5536 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Enhanced heterogeneous activation of peroxymonosulfate by Ruddlesden-Popper-type La2CoO4+δ nanoparticles for bisphenol A degradation. Chemical Engineering Journal, 2022, 429, 131447.	12.7	24
2	Synthesis of freestanding few-layer graphene in microwave plasma: The role of oxygen. Carbon, 2022, 186, 560-573.	10.3	27
3	Conductivity enhancement of Al- and Ta-substituted Li7La3Zr2O7 solid electrolytes by nanoparticles. Journal of the European Ceramic Society, 2022, 42, 1033-1041.	5.7	5
4	Structure–activity correlation in aerobic cyclohexene oxidation and peroxide decomposition over Co _{<i>x</i>} Fe _{3â^²<i>x</i>} O ₄ spinel oxides. Catalysis Science and Technology, 2022, 12, 3594-3605.	4.1	4
5	LES of nanoparticle synthesis in the spraysyn burner: A comparison against experiments. Powder Technology, 2022, 404, 117466.	4.2	11
6	Early particle formation and evolution in iron-doped flames. Combustion and Flame, 2022, 244, 112251.	5. 2	8
7	Large-scale synthesis of iron oxide/graphene hybrid materials as highly efficient photo-Fenton catalyst for water remediation. Environmental Technology and Innovation, 2021, 21, 101239.	6.1	29
8	Investigation of the combustion of iron pentacarbonyl and the formation of key intermediates in iron oxide synthesis flames. Chemical Engineering Science, 2021, 230, 116169.	3.8	9
9	Spray-flame synthesis of LaMO3 (M = Mn, Fe, Co) perovskite nanomaterials: Effect of spray droplet size and esterification on particle size distribution. Proceedings of the Combustion Institute, 2021, 38, 1279-1287.	3.9	19
10	Towards a framework for evaluating and reporting Hansen solubility parameters: applications to particle dispersions. Nanoscale Advances, 2021, 3, 4400-4410.	4.6	10
11	Spray-Flame Synthesis of LaMnO _{3+Î} Nanoparticles for Selective CO Oxidation (SELOX). Energy & Sump; Fuels, 2021, 35, 4367-4376.	5.1	16
12	Gasâ€Phase Synthesis of Siliconâ€Rich Silicon Nitride Nanoparticles for High Performance Lithium–Ion Batteries. Particle and Particle Systems Characterization, 2021, 38, 2100007.	2.3	8
13	Spray Flame Synthesis (SFS) of Lithium Lanthanum Zirconate (LLZO) Solid Electrolyte. Materials, 2021, 14, 3472.	2.9	7
14	Atmospheric-pressure particle mass spectrometer for investigating particle growth in spray flames. Journal of Aerosol Science, 2021, 158, 105827.	3.8	16
15	Direct gas phase synthesis of amorphous Si/C nanoparticles as anode material for lithium ion battery. Journal of Alloys and Compounds, 2021, 870, 159315.	5.5	17
16	Liquidâ€Phase Cyclohexene Oxidation with O ₂ over Sprayâ€Flameâ€Synthesized La _{1â^³<i>x</i>} Sr _{<i>x</i>} CoO ₃ Perovskite Nanoparticles. Chemistry - A European Journal, 2021, 27, 16912-16923.	3.3	10
17	Sprayâ€flame synthesis of La(Fe, Co)O ₃ nanoâ€perovskites from metal nitrates. AICHE Journal, 2020, 66, e16748.	3 . 6	41
18	Gas-phase synthesis of iron oxide nanoparticles for improved magnetic hyperthermia performance. Journal of Alloys and Compounds, 2020, 824, 153814.	5 . 5	31

#	Article	IF	CITATIONS
19	Self-assembled nano-silicon/graphite hybrid embedded in a conductive polyaniline matrix for the performance enhancement of industrial applicable lithium-ion battery anodes. Solid State Ionics, 2020, 344, 115117.	2.7	16
20	Multiscale Simulation of the Formation of Platinum-Particles on Alumina Nanoparticles in a Spray Flame Experiment. Fluids, 2020, 5, 201.	1.7	11
21	Thermophoretic particle sampling on a TEM grid: A new design for sample preparation with high spatial accuracy. Chemie-Ingenieur-Technik, 2020, 92, 1330-1330.	0.8	O
22	Silicon Nanoparticle Films Infilled with Al ₂ O ₃ Using Atomic Layer Deposition for Photosensor, Light Emission, and Photovoltaic Applications. ACS Applied Nano Materials, 2020, 3, 5033-5044.	5.0	6
23	Selective cyclohexene oxidation with O ₂ , H ₂ O ₂ and <i>tert</i> -butyl hydroperoxide over spray-flame synthesized LaCo _{1â^²x} Fe _x O ₃ nanoparticles. Catalysis Science and Technology, 2020. 10. 5196-5206.	4.1	28
24	Spray-flame synthesis of BaTi1-xZrxO3 nanoparticles for energy storage applications. Ceramics International, 2020, 46, 13915-13924.	4.8	7
25	Plasmaâ€nssisted gasâ€phase synthesis and inâ€line coating of silicon nanoparticles. Plasma Processes and Polymers, 2020, 17, 1900245.	3.0	9
26	Assembly, Stability, and Electrical Properties of Sparse Crystalline Silicon Nanoparticle Networks Applied to Solution-Processed Field-Effect Transistors. ACS Applied Electronic Materials, 2020, 2, 692-700.	4.3	3
27	Effect of Spray Parameters in a Spray Flame Reactor During FexOy Nanoparticles Synthesis. Journal of Thermal Spray Technology, 2020, 29, 368-383.	3.1	6
28	Sprayâ€Flameâ€Prepared LaCo _{1–<i>x</i>} Fe _x O ₃ Perovskite Nanoparticles as Active OER Catalysts: Influence of Fe Content and Lowâ€Temperature Heating. ChemElectroChem, 2020, 7, 2564-2574.	3.4	21
29	Nanoparticle Formation and Behavior in Turbulent Spray Flames Investigated by DNS. Flow, Turbulence and Combustion, 2020, 105, 497-516.	2.6	19
30	Gas-phase synthesis of functional nanomaterials: Challenges to kinetics, diagnostics, and process development. Proceedings of the Combustion Institute, 2019, 37, 83-108.	3.9	92
31	Comparative study of flame-based SiO2 nanoparticle synthesis from TMS and HMDSO: SiO-LIF concentration measurement and detailed simulation. Proceedings of the Combustion Institute, 2019, 37, 1221-1229.	3.9	22
32	Detailed simulation of iron oxide nanoparticle forming flames: Buoyancy and probe effects. Proceedings of the Combustion Institute, 2019, 37, 1241-1248.	3.9	20
33	Towards Mechanistic Understanding of Liquidâ€Phase Cinnamyl Alcohol Oxidation with tert â€Butyl Hydroperoxide over Nobleâ€Metalâ€Free LaCo 1– x Fe x O 3 Perovskites. ChemPlusChem, 2019, 84, 1155-1163	.2.8	29
34	SpraySynâ€"A standardized burner configuration for nanoparticle synthesis in spray flames. Review of Scientific Instruments, 2019, 90, 085108.	1.3	89
35	Microwave plasma-assisted silicon nanoparticles: cytotoxic, molecular, and numerical responses against cancer cells. RSC Advances, 2019, 9, 13336-13347.	3.6	7
36	Sprayâ€Flameâ€Synthesized LaCo 1â^' x Fe x O 3 Perovskite Nanoparticles as Electrocatalysts for Water and Ethanol Oxidation. ChemElectroChem, 2019, 6, 4266-4274.	3.4	28

3

#	Article	IF	Citations
37	Synthesis of silicon nanoparticles in a pilot-plant-scale microwave plasma reactor: Impact of flow rates and precursor concentration on the nanoparticle size and aggregation. Powder Technology, 2019, 342, 880-886.	4.2	25
38	Durability study of platinum nanoparticles supported on gas-phase synthesized graphene in oxygen reduction reaction conditions. Applied Surface Science, 2019, 467-468, 1181-1186.	6.1	29
39	All gas-phase synthesis of graphene: Characterization and its utilization for silicon-based lithium-ion batteries. Electrochimica Acta, 2018, 272, 52-59.	5.2	40
40	Intra- and inter-nanocrystal charge transport in nanocrystal films. Nanoscale, 2018, 10, 8042-8057.	5.6	14
41	Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid. Nano Letters, 2018, 18, 336-346.	9.1	40
42	Efficient p-n junction-based thermoelectric generator that can operate at extreme temperature conditions. Journal Physics D: Applied Physics, 2018, 51, 014005.	2.8	20
43	Ejector-based sampling from low-pressure aerosol reactors. Journal of Aerosol Science, 2018, 123, 105-115.	3.8	9
44	Parasitic Reactions in Nanosized Silicon Anodes for Lithium-Ion Batteries. Nano Letters, 2017, 17, 1512-1519.	9.1	122
45	Micrometer-sized nano-structured silicon/carbon composites for lithium-ion battery anodes synthesized based on a three-step Hansen solubility parameter (HSP) concept. Journal of Industrial and Engineering Chemistry, 2017, 52, 305-313.	5 . 8	10
46	Light-induced nonthermal population of optical phonons in nanocrystals. Physical Review B, 2017, 95, .	3.2	20
47	Microstructure and thermoelectric properties of Si-WSi2 nanocomposites. Acta Materialia, 2017, 125, 321-326.	7.9	22
48	Optoelectronic properties and depth profile of charge transport in nanocrystal films. Physical Review B, 2017, 96, .	3.2	6
49	Experimental and numerical study of a HMDSO-seeded premixed laminar low-pressure flame for SiO2 nanoparticle synthesis. Proceedings of the Combustion Institute, 2017, 36, 1045-1053.	3.9	27
50	Mass spectrometric analysis of clusters and nanoparticles during the gas-phase synthesis of tungsten oxide. Proceedings of the Combustion Institute, 2017, 36, 1037-1044.	3.9	17
51	Novel Si-CNT/polyaniline nanocomposites as Lithium-ion battery anodes for improved cycling performance. Materials Today: Proceedings, 2017, 4, S263-S268.	1.8	8
52	Inline coating of silicon nanoparticles in a plasma reactor: Reactor design, simulation and experiment. Materials Today: Proceedings, 2017, 4, S118-S127.	1.8	13
53	Lattice dynamics and thermoelectric properties of nanocrystalline silicon–germanium alloys. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 515-523.	1.8	8
54	Siliconâ€based nanocomposites for thermoelectric application. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 497-514.	1.8	21

#	Article	IF	CITATIONS
55	A novel magnetically-separable porous iron-oxide nanocomposite as an adsorbent for methylene blue (MB) dye. Journal of Environmental Chemical Engineering, 2016, 4, 3779-3787.	6.7	27
56	Three-Dimensional Percolation and Performance of Nanocrystal Field-Effect Transistors. Physical Review Applied, 2016, 5, .	3.8	15
57	Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance. Nanoscale, 2016, 8, 12035-12046.	5.6	10
58	High-yield and scalable synthesis of a Silicon/Aminosilane-functionalized Carbon NanoTubes/Carbon (Si/A-CNT/C) composite as a high-capacity anode for lithium-ion batteries. Journal of Applied Electrochemistry, 2016, 46, 229-239.	2.9	15
59	Laserâ€Assisted Wetâ€Chemical Doping of Sintered Si and Ge Nanoparticle Films. Advanced Electronic Materials, 2015, 1, 1400029.	5.1	5
60	Mesoporous Sulfonated Carbon Materials Prepared by Spray Pyrolysis. ChemCatChem, 2015, 7, 2891-2896.	3.7	7
61	Microwave plasma synthesis of Si/Ge and Si/WSi ₂ nanoparticles for thermoelectric applications. Journal Physics D: Applied Physics, 2015, 48, 314010.	2.8	11
62	Si–CNT/rGO Nanoheterostructures as Highâ€Performance Lithiumâ€Ionâ€Battery Anodes. ChemElectroChem, 2015, 2, 1983-1990.	3.4	33
63	Initial reaction steps during flame synthesis of iron-oxide nanoparticles. CrystEngComm, 2015, 17, 6930-6939.	2.6	41
64	Impact of Ambient Pressure on Titania Nanoparticle Formation During Spray-Flame Synthesis. Journal of Nanoscience and Nanotechnology, 2015, 15, 9449-9456.	0.9	24
65	Influence of carbon content, particle size, and partial manganese substitution on the electrochemical performance of LiFexMn1-xPO4/carbon composites. Ionics, 2015, 21, 1857-1866.	2.4	9
66	Thermoelectrics from silicon nanoparticles: the influence of native oxide. European Physical Journal B, 2015, 88, 1.	1.5	11
67	Resonant photothermal laser processing of hybrid gold/titania nanoparticle films. Applied Surface Science, 2015, 336, 48-52.	6.1	5
68	Direct self-assembly of Fe ₂ O ₃ /reduced graphene oxide nanocomposite for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 11566-11574.	10.3	58
69	Charge storage in Î ² -FeSi ² nanoparticles. Journal of Applied Physics, 2015, 117, 054303.	2.5	5
70	Towards solar cell emitters based on colloidal Si nanocrystals. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 156-161.	1.8	3
71	Laser-based in situ measurement and simulation of gas-phase temperature and iron atom concentration in a pilot-plant nanoparticle synthesis reactor. Proceedings of the Combustion Institute, 2015, 35, 2299-2306.	3.9	29
72	Spatially resolved determination of thermal conductivity by Raman spectroscopy. Semiconductor Science and Technology, 2014, 29, 124005.	2.0	37

#	Article	lF	Citations
73	Iron Oxide/Polymerâ€Based Nanocomposite Material for Hydrogen Sulfide Adsorption Applications. Chemical Engineering and Technology, 2014, 37, 1938-1944.	1.5	13
74	Structural and electronic properties of <i> \hat{l}^2 </i> < mml:msub> < mml:mi> FeSi < / mml:mi> < mml:mn> 2 < / mm The role of stacking fault domains. Physical Review B, 2014, 89, .	l:mr8≱2:/mr	nl:n x sub>
75	Resonant Electronic Coupling Enabled by Small Molecules in Nanocrystal Solids. Nano Letters, 2014, 14, 3817-3826.	9.1	22
76	In situ nanoparticle size measurements of gas-borne silicon nanoparticles by time-resolved laser-induced incandescence. Applied Physics B: Lasers and Optics, 2014, 116, 623-636.	2.2	62
77	Silicon/Polyaniline Nanocomposites as Anode Material for Lithium Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A40-A45.	2.9	68
78	Thermal conductivity of mesoporous films measured by Raman spectroscopy. Applied Physics Letters, 2014, 104, 161907.	3.3	21
79	Nanocrystalline silicon: lattice dynamics and enhanced thermoelectric properties. Physical Chemistry Chemical Physics, 2014, 16, 25701-25709.	2.8	49
80	Surface functionalization of microwave plasma-synthesized silica nanoparticles for enhancing the stability of dispersions. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	30
81	High Temperature Thermoelectric Device Concept Using Large Area PN Junctions. Journal of Electronic Materials, 2014, 43, 2376-2383.	2.2	36
82	Ignition delay times of shock-heated tetraethoxysilane, hexamethyldisiloxane, and titanium tetraisopropoxide. Chemical Physics Letters, 2014, 601, 54-58.	2.6	5
83	Direct gas-phase synthesis of single-phase \hat{l}^2 -FeSi2 nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	9
84	Excimer laser doping using highly doped silicon nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2456-2462.	1.8	14
85	Impact of composition and morphology on the optical properties of Si-NC/P3HT thin films processed from solution. Applied Physics A: Materials Science and Processing, 2013, 113, 439-446.	2.3	2
86	Separation of semiconducting and ferromagnetic FeSi2-nanoparticles by magnetic filtering. Journal of Applied Physics, $2013,114,.$	2.5	7
87	Solid state NMR structural studies of the lithiation of nano-silicon:. Solid State Ionics, 2013, 249-250, 41-48.	2.7	15
88	Laser-doping of crystalline silicon substrates using doped silicon nanoparticles. Thin Solid Films, 2013, 548, 437-442.	1.8	9
89	Effects of impurities on the lattice dynamics of nanocrystalline silicon for thermoelectric application. Journal of Materials Science, 2013, 48, 2836-2845.	3.7	23
90	Morphology, thermoelectric properties and wetâ€chemical doping of laserâ€sintered germanium nanoparticles. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 153-160.	1.8	14

#	Article	IF	Citations
91	Fabrication of periodic surface topographies via sequential photothermal laser microsintering of silicon nanoparticle films. Applied Surface Science, 2013, 278, 278-283.	6.1	0
92	Synthesis of Small Carbon Nanoparticles in a Microwave Plasma Flow Reactor. Zeitschrift Fur Physikalische Chemie, 2013, 227, 357-370.	2.8	5
93	Thermoelectric Properties of Nanocrystalline Silicon from a Scaledâ€Up Synthesis Plant. Advanced Engineering Materials, 2013, 15, 379-385.	3.5	57
94	Sintering of thin titanium dioxide nanoparticle films via photothermal processing with ultraviolet continuous-wave lasers. Applied Surface Science, 2013, 278, 336-340.	6.1	18
95	Buoyancy induced limits for nanoparticle synthesis experiments in horizontal premixed low-pressure flat-flame reactors. Combustion Theory and Modelling, 2013, 17, 504-521.	1.9	15
96	A new thermoelectric concept using large area PN junctions. Materials Research Society Symposia Proceedings, 2013, 1543, 3-8.	0.1	11
97	Low temperature diffusion of Li atoms into Si nanoparticles and surfaces. Journal of Applied Physics, 2013, 114, 034310.	2.5	3
98	Depassivation kinetics in crystalline silicon nanoparticles. Physical Review B, 2013, 88, .	3.2	7
99	Exchange-Coupled Donor Dimers in Nanocrystal Quantum Dots. Physical Review Letters, 2012, 108, 126806.	7.8	24
100	Laser-sintered thin films of doped SiGe nanoparticles. Applied Physics Letters, 2012, 100, 231907.	3.3	20
101	The effect of Peltier heat during current activated densification. Applied Physics Letters, 2012, 101, .	3.3	29
102	Comparison of Micro- and Nanoscale Fe+3–Containing (Hematite) Particles for Their Toxicological Properties in Human Lung Cells In Vitro. Toxicological Sciences, 2012, 126, 173-182.	3.1	47
103	A sintered nanoparticle p-n junction observed by a Seebeck microscan. Journal of Applied Physics, 2012, 111, .	2.5	13
104	Monodisperse titania microspheres via controlled nanoparticle aggregation. Physical Chemistry Chemical Physics, 2012, 14, 7490.	2.8	7
105	Synthesis of Tailored Nanoparticles in Flames: Chemical Kinetics, In Situ Diagnostics, Numerical Simulation, and Process Development. Nanoscience and Technology, 2012, , 3-48.	1.5	1
106	Thermally Induced Reactions between Lithiated Nano-Silicon Electrode and Electrolyte for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2012, 159, A657-A663.	2.9	62
107	High-capacity cathodes for lithium-ion batteries from nanostructured LiFePO4 synthesized by highly-flexible and scalable flame spray pyrolysis. Journal of Power Sources, 2012, 216, 76-83.	7.8	66
108	Electrical Transport in Semiconductor Nanoparticle Arrays: Conductivity, Sensing and Modeling. Nanoscience and Technology, 2012, , 231-271.	1.5	4

#	Article	IF	Citations
109	Lowâ€Cost Postâ€Growth Treatments of Crystalline Silicon Nanoparticles Improving Surface and Electronic Properties. Advanced Functional Materials, 2012, 22, 1190-1198.	14.9	44
110	The realization of a pn-diode using only silicon nanoparticles. Scripta Materialia, 2012, 67, 265-268.	5.2	14
111	Stabilization of mid-sized silicon nanoparticles by functionalization with acrylic acid. Nanoscale Research Letters, 2012, 7, 76.	5. 7	74
112	Photothermal laser processing of thin silicon nanoparticle films: on the impact of oxide formation on film morphology. Applied Physics A: Materials Science and Processing, 2012, 106, 853-861.	2.3	12
113	Functionalization of SiO2 Nanoparticles and Their Superhydrophobic Surface Coating. Special Publication - Royal Society of Chemistry, 2012, , 113-120.	0.0	0
114	From nanoparticles to nanocrystalline bulk: percolation effects in field assisted sintering of silicon nanoparticles. Nanotechnology, 2011, 22, 135601.	2.6	35
115	Solution-Processed Networks of Silicon Nanocrystals: The Role of Internanocrystal Medium on Semiconducting Behavior. Journal of Physical Chemistry C, 2011, 115, 20120-20127.	3.1	41
116	Plasma synthesis of nanostructures for improved thermoelectric properties. Journal Physics D: Applied Physics, 2011, 44, 174034.	2.8	101
117	Artificially nanostructured n-type SiGe bulk thermoelectrics through plasma enhanced growth of alloy nanoparticles from the gas phase. Journal of Materials Research, 2011, 26, 1872-1878.	2.6	21
118	Freestanding silicon quantum dots: origin of red and blue luminescence. Nanotechnology, 2011, 22, 055707.	2.6	54
119	Gas-Phase Synthesis of Nanoscale Silicon as an Economical Route towards Sustainable Energy Technology. KONA Powder and Particle Journal, 2011, 29, 191-207.	1.7	56
120	Synthesis and Ink-Jet Printing of Highly Luminescing Silicon Nanoparticles for Printable Electronics. Journal of Nanoscience and Nanotechnology, 2011, 11, 5028-5033.	0.9	11
121	Stable Aqueous Dispersions of ZnO Nanoparticles for Ink-Jet Printed Gas Sensors. Journal of Nanoscience and Nanotechnology, 2011, 11, 10839-10843.	0.9	9
122	Synthesis of tailored WO3 and WOx $(2.9 < x < 3)$ nanoparticles by adjusting the combustion conditions in a H2/O2/Ar premixed flame reactor. Proceedings of the Combustion Institute, 2011, 33, 1883-1890.	3.9	21
123	Role of oxygen on microstructure and thermoelectric properties of silicon nanocomposites. Journal of Applied Physics, 2011, 110, 113515.	2.5	65
124	Efficiency Enhancement in Hybrid P3HT/Silicon Nanocrystal Solar Cells. Green, 2011, 1, .	0.4	21
125	Photovoltaic Devices from Silicon Nanoparticles. Materials Research Society Symposia Proceedings, 2010, 1260, 1.	0.1	0
126	Influence of reaction parameters on the photoluminescence properties of free standing functionalized silicon nanocrystals. Materials Research Society Symposia Proceedings, 2010, 1260, 1.	0.1	0

#	Article	IF	Citations
127	Defect reduction in silicon nanoparticles by low-temperature vacuum annealing. Applied Physics Letters, 2010, 96, .	3.3	34
128	Nanocrystalline silicon compacted by spark-plasma sintering: Microstructure and thermoelectric properties. Materials Research Society Symposia Proceedings, 2010, 1267, 1.	0.1	6
129	Electroluminescence from silicon nanoparticles fabricated from the gas phase. Nanotechnology, 2010, 21, 455201.	2.6	5
130	Freestanding spherical silicon nanocrystals: A model system for studying confined excitons. Applied Physics Letters, 2010, 97, .	3.3	21
131	Silicon nanocrystals dispersed in water: Photosensitizers for molecular oxygen. Applied Physics Letters, 2010, 96, 211901.	3.3	16
132	Optical and electrical properties of silicon nanoparticles. , 2010, , .		5
133	Novel Material Properties Based on Flame-synthesized Nanomaterials. KONA Powder and Particle Journal, 2009, 27, 186-194.	1.7	13
134	Dielectric screening versus quantum confinement of phosphorus donors in silicon nanocrystals investigated by magnetic resonance. Physical Review B, 2009, 79, .	3.2	33
135	Enhanced long-term stability of functionalized silicon nanoparticles using esters. Materials Research Society Symposia Proceedings, 2009, 1207, 1.	0.1	2
136	Luminescent Colloidal Dispersion of Silicon Quantum Dots from Microwave Plasma Synthesis: Exploring the Photoluminescence Behavior Across the Visible Spectrum. Advanced Functional Materials, 2009, 19, 696-703.	14.9	223
137	Imaging measurements of atomic iron concentration withÂlaser-induced fluorescence in a nanoparticle synthesis flame reactor. Applied Physics B: Lasers and Optics, 2009, 94, 119-125.	2.2	35
138	Silicon/organic semiconductor heterojunctions for solar cells. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2775-2781.	1.8	26
139	Surface chemistry and photoluminescence property of functionalized silicon nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1010-1014.	2.7	24
140	Electrical properties of aluminum-doped zinc oxide (AZO) nanoparticles synthesized by chemical vapor synthesis. Nanotechnology, 2009, 20, 445701.	2.6	77
141	Gas-phase synthesis of non-agglomerated nanoparticles by fast gasdynamic heating and cooling. , 2009, , 857-862.		13
142	Light-induced charge transfer in hybrid composites of organic semiconductors and silicon nanocrystals. Applied Physics Letters, 2009, 94, .	3.3	38
143	Doping efficiency in freestanding silicon nanocrystals from the gas phase: Phosphorus incorporation and defect-induced compensation. Physical Review B, 2009, 80, .	3.2	106
144	Shock-tube study of the ignition delay time of tetraethoxysilane (TEOS)., 2009,, 781-785.		1

#	Article	IF	CITATIONS
145	Silicon Nanoparticles: Excitonic Fine Structure and Oscillator Strength. Advances in Solid State Physics, 2009, , 79-90.	0.8	5
146	Ga2O3 nanoparticles synthesized in a low-pressure flame reactor. Journal of Nanoparticle Research, 2008, 10, 121-127.	1.9	6
147	Towards the implanting of ions and positioning of nanoparticles with nm spatial resolution. Applied Physics A: Materials Science and Processing, 2008, 91, 567-571.	2.3	64
148	Femtosecond transient absorption spectroscopy of silanized silicon quantum dots. Physical Review B, 2008, 77, .	3.2	19
149	In-situ Investigation of the Mechanical and Electrical Properties of Nanosized Silicon Powders. Materials Research Society Symposia Proceedings, 2008, 1083, 50601.	0.1	1
150	Electronic properties of doped silicon nanocrystal films. Journal of Applied Physics, 2008, 104, .	2.5	84
151	Electronic Transport in Phosphorus-Doped Silicon Nanocrystal Networks. Physical Review Letters, 2008, 100, 026803.	7.8	128
152	Microcrystalline silicon formation by silicon nanoparticles. Journal of Applied Physics, 2008, 103, .	2.5	43
153	Core and grain boundary sensitivity of tungsten-oxide sensor devices by molecular beam assisted particle deposition. Journal of Applied Physics, 2007, 102, 124305.	2.5	21
154	GaAs whiskers grown by metal-organic vapor-phase epitaxy using Fe nanoparticles. Journal of Applied Physics, 2007, 101, 054318.	2.5	19
155	Direct Assembly of Quantum Confined Nano-Particles. Materials Research Society Symposia Proceedings, 2007, 1017, 88.	0.1	1
156	Temperature-induced crossover between bright and dark exciton emission in silicon nanoparticles. Europhysics Letters, 2007, 79, 37002.	2.0	13
157	Silicon nanoparticles: Absorption, emission, and the nature of the electronic bandgap. Journal of Applied Physics, 2007, 101, 103112.	2.5	138
158	Electronic transport through Si nanocrystal films: Spin-dependent conductivity studies. Physica B: Condensed Matter, 2007, 401-402, 527-530.	2.7	8
159	Phosphorus doping of Si nanocrystals: Interface defects and charge compensation. Physica B: Condensed Matter, 2007, 401-402, 541-545.	2.7	26
160	Thermoelectric effect in laser annealed printed nanocrystalline silicon layers. Physica Status Solidi - Rapid Research Letters, 2007, 1, 262-264.	2.4	54
161	Gas-temperature imaging in a low-pressure flame reactor for nano-particle synthesis with multi-line NO-LIF thermometry. Applied Physics B: Lasers and Optics, 2007, 88, 373-377.	2.2	42
162	Functionalization of silicon nanoparticles via hydrosilylation with 1-alkenes. Colloid and Polymer Science, 2007, 285, 729-736.	2.1	51

#	Article	IF	CITATIONS
163	Synthesis of SnO2â''x nanoparticles tuned between $0\hat{a}@\frac{1}{2}x\hat{a}@\frac{1}{2}1$ in a premixed low pressure H2/O2/Ar flame. Proceedings of the Combustion Institute, 2007, 31, 1805-1812.	3.9	21
164	Morphology, structure and electrical properties of iron nanochains. Nanotechnology, 2006, 17, 3111-3115.	2.6	15
165	Raman properties of silicon nanoparticles. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 155-158.	2.7	135
166	Quantum size effect of valence band plasmon energies in Si and $SnO[sub\ x]$ nanoparticles. Journal of Vacuum Science & Technology B, 2006, 24, 1156.	1.3	15
167	Vibrational and defect states in SnOx nanoparticles. Journal of Applied Physics, 2006, 99, 113108.	2.5	26
168	Properties of Flame Synthesized Germanium Oxide Nanoparticles. Journal of Nanoscience and Nanotechnology, 2005, 5, 436-441.	0.9	5
169	Nanostructured gas sensors and electrical characterization of deposited SnO2 nanoparticles in ambient gas atmosphere. Sensors and Actuators B: Chemical, 2005, 109, 13-18.	7.8	56
170	SnO2/TiO2 mixed oxide particles synthesized in doped premixed H2/O2/Ar flames. Proceedings of the Combustion Institute, 2005, 30, 2577-2584.	3.9	17
171	Formation of Si-nanoparticles in a microwave reactor: Comparison between experiments and modelling. Journal of Nanoparticle Research, 2005, 7, 29-41.	1.9	63
172	Infrared properties of silicon nanoparticles. Journal of Applied Physics, 2005, 97, 084306.	2.5	34
173	Controlled formation and size-selected deposition of indium nanoparticles from a microwave flow reactor on semiconductor surfaces. Applied Physics Letters, 2005, 87, 093105.	3.3	12
174	Self Assembled Iron Nanowires: Morphology, Electrical and Magnetic Properties. Materials Research Society Symposia Proceedings, 2005, 877, 1.	0.1	0
175	Photoluminescence of GaAs nanowhiskers grown on Si substrate. Applied Physics Letters, 2004, 85, 6407-6408.	3.3	27
176	Synthesis and characterization of nanowires formed by self-assembled iron particles. Nanotechnology, 2004, 15, 1665-1670.	2.6	35
177	Synthesis of High Purity Silicon Nanoparticles in a Low Pressure Microwave Reactor. Journal of Nanoscience and Nanotechnology, 2004, 4, 1039-1044.	0.9	152
178	Synthesis of Germanium Oxide Nanoparticles in Low-Pressure Premixed Flames. Journal of Nanoscience and Nanotechnology, 2004, 4, 157-161.	0.9	7
179	Size analysis in low-pressure nanoparticle reactors: comparison of particle mass spectrometry with in situ probing transmission electron microscopy. Journal of Aerosol Science, 2002, 33, 833-841.	3.8	31
180	Formation and properties of ZnO nano-particles from gas phase synthesis processes. Journal of Materials Science, 2002, 37, 4349-4360.	3.7	133

#	Article	IF	CITATIONS
181	Silicon Particle Formation by Pyrolysis of Silane in a Hot Wall Gasphase Reactor. Chemical Engineering and Technology, 2001, 24, 261-264.	1.5	66
182	Formation and In Situ Sizing of \hat{I}^3 -Fe2O3 Nanoparticles in a Microwave Flow Reactor. Journal of Nanoscience and Nanotechnology, 2001, 1, 221-225.	0.9	15
183	Silicon Particle Formation by Pyrolysis of Silane in a Hot Wall Gasphase Reactor. Chemical Engineering and Technology, 2001, 24, 261-264.	1.5	1
184	Conductivity studies on AgSbO3 channel structure by impedance spectroscopy. Solid State Ionics, 1998, 107, 111-116.	2.7	11
185	Chemical tailoring of the charging energy in metal cluster arrangements by use of bifunctional spacer molecules. Journal of Materials Chemistry, 1998, 8, 517-518.	6.7	48
186	Electrical and optical properties of zeolite y supported sno2 nanoparticles. Colloid and Polymer Science, 1997, 275, 91-95.	2.1	21
187	Phase Composition, Oxygen Content, and Thermal Conductivity of AIN(Y2O3) Ceramics. Journal of the American Ceramic Society, 1991, 74, 718-723.	3.8	90
188	Morphology Control of Thin P3HT-Si-NCs Composite Films for Hybrid Photovoltaic Cells. Materials Science Forum, 0, 730-732, 227-231.	0.3	1