
Junjun Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1670629/publications.pdf Version: 2024-02-01

LUNIUM NI

#	Article	IF	CITATIONS
1	Cathepsin B plays a critical role in inducing Alzheimer's disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain, Behavior, and Immunity, 2017, 65, 350-361.	2.0	165
2	The Critical Role of Proteolytic Relay through Cathepsins B and E in the Phenotypic Change of Microglia/Macrophage. Journal of Neuroscience, 2015, 35, 12488-12501.	1.7	87
3	Porphyromonas gingivalis Infection Induces Amyloid-β Accumulation in Monocytes/Macrophages. Journal of Alzheimer's Disease, 2019, 72, 479-494.	1.2	67
4	Infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice. Scientific Reports, 2017, 7, 11759.	1.6	58
5	Increased expression and altered subcellular distribution of cathepsin B in microglia induce cognitive impairment through oxidative stress and inflammatory response in mice. Aging Cell, 2019, 18, e12856.	3.0	57
6	Leptomeningeal Cells Transduce Peripheral Macrophages Inflammatory Signal to Microglia in Reponse to <i>Porphyromonas gingivalis</i> LPS. Mediators of Inflammation, 2013, 2013, 1-11.	1.4	49
7	The Neuroprotective Effects of Brazilian Green Propolis on Neurodegenerative Damage in Human Neuronal SH-SY5Y Cells. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-13.	1.9	47
8	The Oral-Gut-Brain AXIS: The Influence of Microbes in Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2021, 15, 633735.	1.8	45
9	Receptor for advanced glycation end products upâ€regulation in cerebral endothelial cells mediates cerebrovascularâ€related amyloid β accumulation after <i>Porphyromonas gingivalis</i> infection. Journal of Neurochemistry, 2021, 158, 724-736.	2.1	41
10	Brazilian Green Propolis Prevents Cognitive Decline into Mild Cognitive Impairment in Elderly People Living at High Altitude. Journal of Alzheimer's Disease, 2018, 63, 551-560.	1.2	38
11	An impaired intrinsic microglial clock system induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain. Journal of Neuroinflammation, 2019, 16, 173.	3.1	33
12	Cathepsin B Gene Knockout Improves Behavioral Deficits and Reduces Pathology in Models of Neurologic Disorders. Pharmacological Reviews, 2022, 74, 600-629.	7.1	29
13	Microglial circadian clock regulation of microglial structural complexity, dendritic spine density and inflammatory response. Neurochemistry International, 2021, 142, 104905.	1.9	27
14	Cathepsin B Regulates Collagen Expression by Fibroblasts via Prolonging TLR2/NF- <i>κ</i> B Activation. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-12.	1.9	24
15	Nucleus distribution of cathepsin B in senescent microglia promotes brain aging through degradation of sirtuins. Neurobiology of Aging, 2020, 96, 255-266.	1.5	24
16	Cathepsin D deficiency induces oxidative damage in brain pericytes and impairs the blood–brain barrier. Molecular and Cellular Neurosciences, 2015, 64, 51-60.	1.0	21
17	Cathepsin S Is Involved in Th17 Differentiation Through the Upregulation of IL-6 by Activating PAR-2 after Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis. Frontiers in Pharmacology, 2017, 8, 470.	1.6	21
18	Cathepsin E in neutrophils contributes to the generation of neuropathic pain in experimental autoimmune encephalomyelitis. Pain, 2019, 160, 2050-2062.	2.0	21

Junjun Ni

#	Article	IF	CITATIONS
19	The Critical Role of IL-10 in the Antineuroinflammatory and Antioxidative Effects of <i>Rheum tanguticum</i> on Activated Microglia. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	1.9	20
20	Gut Microbiota: Critical Controller and Intervention Target in Brain Aging and Cognitive Impairment. Frontiers in Aging Neuroscience, 2021, 13, 671142.	1.7	20
21	Cathepsin B inhibition blocks neurite outgrowth in cultured neurons by regulating lysosomal trafficking and remodeling. Journal of Neurochemistry, 2020, 155, 300-312.	2.1	19
22	Extralysosomal cathepsin B in central nervous system: Mechanisms and therapeutic implications. Brain Pathology, 2022, 32, e13071.	2.1	16
23	Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis Induces Bone Loss-Correlated Alzheimer's Disease-Like Pathologies in Middle-Aged Mice. Journal of Alzheimer's Disease, 2020, 78, 61-74.	1.2	15
24	GSK3β is involved in promoting Alzheimer's disease pathologies following chronic systemic exposure to Porphyromonas gingivalis lipopolysaccharide in amyloid precursor proteinNL-F/NL-F knock-in mice. Brain, Behavior, and Immunity, 2021, 98, 1-12.	2.0	15
25	Microglial cathepsin E plays a role in neuroinflammation and amyloid β production in Alzheimer's disease. Aging Cell, 2022, 21, e13565.	3.0	14
26	A potential biomarker of preclinical Alzheimer's disease: The olfactory dysfunction and its pathogenesis-based neural circuitry impairments. Neuroscience and Biobehavioral Reviews, 2022, 132, 857-869.	2.9	11
27	IL-33 induces orofacial neuropathic pain through Fyn-dependent phosphorylation of GluN2B in the trigeminal spinal subnucleus caudalis. Brain, Behavior, and Immunity, 2022, 99, 266-280.	2.0	10
28	Cathepsin H deficiency decreases hypoxia-ischemia-induced hippocampal atrophy in neonatal mice through attenuated TLR3/IFN-β signaling. Journal of Neuroinflammation, 2021, 18, 176.	3.1	8
29	A novel cyclic peptide (Naturido) modulates glia–neuron interactions in vitro and reverses ageing-related deficits in senescence-accelerated mice. PLoS ONE, 2021, 16, e0245235.	1.1	6
30	Porphyromonas Gingivalis Infection Induces Synaptic Failure via Increased IL-1β Production in Leptomeningeal Cells. Journal of Alzheimer's Disease, 2021, 83, 665-681.	1.2	6
31	Differential Expression and Distinct Roles of Proteinase-Activated Receptor 2 in Microglia and Neurons in Neonatal Mouse Brain After Hypoxia-Ischemic Injury. Molecular Neurobiology, 2022, 59, 717-730.	1.9	6
32	Salsolinol Damaged Neuroblastoma SH-SY5Y Cells Induce Proliferation of Human Monocyte THP-1 Cells Through the mTOR Pathway in a Co-culture System. Neurochemical Research, 2015, 40, 932-941.	1.6	5
33	WS6 Induces Adult Hippocampal Neurogenesis in Correlation to its Antidepressant Effect on the Alleviation of Depressive-like Behaviors of Rats. Neuroscience, 2021, 473, 119-129.	1.1	5
34	Inflammation Spreading: Negative Spiral Linking Systemic Inflammatory Disorders and Alzheimer's Disease. Frontiers in Cellular Neuroscience, 2021, 15, 638686.	1.8	4
35	The Dual Nature of Microglia in Alzheimer's Disease: A Microglia-Neuron Crosstalk Perspective. Neuroscientist, 2023, 29, 616-638.	2.6	4
36	Rab21 Protein Is Degraded by Both the Ubiquitin-Proteasome Pathway and the Autophagy-Lysosome Pathway. International Journal of Molecular Sciences, 2022, 23, 1131.	1.8	3

Junjun Ni

#	Article	IF	CITATIONS
37	Overexpression of Cathepsin E Interferes with Neuronal Differentiation of P19 Embryonal Teratocarcinoma Cells by Degradation of N-cadherin. Cellular and Molecular Neurobiology, 2017, 37, 437-443.	1.7	2
38	Boi-ogi-to (TJ-20), a Kampo Formula, Suppresses the Inflammatory Bone Destruction and the Expression of Cytokines in the Synovia of Ankle Joints of Adjuvant Arthritic Rats. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-10.	0.5	2
39	P2â€191: RATANASAMPIL SUPPRESSES THE HYPOXIAâ€REOXYGENATION–INDUCED INFLAMMATORY RESPON THROUGH INHIBITING NFâ€KAPPA B ACTIVATION IN MICROGLIA. Alzheimer's and Dementia, 2018, 14, P742.	SE 0.4	1
40	Neuronal Circuits Associated with Fear Memory: Potential Therapeutic Targets for Posttraumatic Stress Disorder. Neuroscientist, 2022, , 107385842110699.	2.6	1
41	[P2–185]: THE STUDY OF SUPPRESSION OF HYPOXIAâ€INDUCED INFLAMMATION BY TIBETAN MEDICINE <i>RATANASAMPIL</i> IN MICROGLIA CELLS. Alzheimer's and Dementia, 2017, 13, P677.	0.4	0
42	Ratanasampil Suppresses the Hypoxia-Related Inflammatory Responses by Inhibiting Oxidative Stress and NF-kB Activation in Microglia. , 2018, 08, .		0
43	The suppression effects of Ratanasampil on oxidative stress-induced neuronal damage and microglia-mediated neuroinflammation. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-P-006.	0.0	0
44	Memory Decline and Bone Loss in Middle-aged Mice are induced by LPS derived from <i>Porphyromonas gingivalis</i> . Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-P-095.	0.0	0
45	Aβ Production in Neurons was Promoted by <i> </i> Leptomeningeal cells <i> </i> after <i>Porphyromonas gingivalis</i> Infection. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 3-P-007.	0.0	0
46	Cathepsin E-dependent production of elastase in neutrophils induces mechanical allodynia in experimental autoimmune encephalomyelitis. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 1-SS-63.	0.0	0
47	RAGE expression in Brain Endothelial Cells was increased by <i> Porphyromonas gingivalis</i> Infection. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2019, 92, 2-P-011.	0.0	0