Cynthia S Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1670584/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Leaf and root traits, but not relationships among traits, vary with ontogeny in seedlings. Plant and Soil, 2021, 460, 247-261.	3.7	17
2	Invasive annual grass interacts with drought to influence plant communities and soil moisture in dryland restoration. Ecosphere, 2021, 12, e03417.	2.2	6
3	Cultivars of popular restoration grass developed for drought do not have higher drought resistance and do not differ in droughtâ€related traits from other accessions. Restoration Ecology, 2021, 29, e13415.	2.9	3
4	Negative effects of nitrogen override positive effects of phosphorus on grassland legumes worldwide. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	40
5	Soil amendment interacts with invasive grass and drought to uniquely influence aboveground versus belowground biomass in aridland restoration. Restoration Ecology, 2020, 28, A13.	2.9	8
6	Getting to the root of restoration: considering root traits for improved restoration outcomes under drought and competition. Restoration Ecology, 2020, 28, 1384-1395.	2.9	30
7	Global impacts of fertilization and herbivore removal on soil net nitrogen mineralization are modulated by local climate and soil properties. Global Change Biology, 2020, 26, 7173-7185.	9.5	25
8	Slash Pile Burn Scar Restoration: Tradeoffs between Abundance of Non-Native and Native Species. Forests, 2020, 11, 813.	2.1	2
9	Microbial processing of plant remains is coâ€limited by multiple nutrients in global grasslands. Global Change Biology, 2020, 26, 4572-4582.	9.5	27
10	Soil net nitrogen mineralisation across global grasslands. Nature Communications, 2019, 10, 4981.	12.8	57
11	SRU _D : A simple nonâ€destructive method for accurate quantification of plant diversity dynamics. Journal of Ecology, 2019, 107, 2155-2166.	4.0	9
12	Belowground Biomass Response to Nutrient Enrichment Depends on Light Limitation Across Globally Distributed Grasslands. Ecosystems, 2019, 22, 1466-1477.	3.4	34
13	Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nature Ecology and Evolution, 2019, 3, 400-406.	7.8	97
14	The Role of Urban Agriculture in a Secure, Healthy, and Sustainable Food System. BioScience, 2018, 68, 748-759.	4.9	37
15	Invasive Plants. , 2018, , 209-252.		0
16	Downy Brome Control and Impacts on Perennial Grass Abundance: A Systematic Review Spanning 64 Years. Rangeland Ecology and Management, 2017, 70, 396-404.	2.3	36
17	Minimizing effects of methodological decisions on interpretation and prediction in species distribution studies: An example with background selection. Ecological Modelling, 2017, 363, 48-56.	2.5	34
18	Diaspore heteromorphism in the invasive Bromus tectorum L. (Poaceae): Sterile florets increase dispersal propensity and distance. Flora: Morphology, Distribution, Functional Ecology of Plants, 2016, 224, 7-13.	1.2	6

Cynthia S Brown

#	Article	IF	CITATIONS
19	Field validation of an invasive species Maxent model. Ecological Informatics, 2016, 36, 126-134.	5.2	196
20	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	12.6	16
21	Drivers of Variation in Aboveground Net Primary Productivity and Plant Community Composition Differ Across a Broad Precipitation Gradient. Ecosystems, 2016, 19, 521-533.	3.4	47
22	Exotic Annual Bromus Invasions: Comparisons Among Species and Ecoregions in the Western United States. Springer Series on Environmental Management, 2016, , 11-60.	0.3	44
23	Attributes That Confer Invasiveness and Impacts Across the Large Genus Bromus: Lessons from the Bromus REEnet Database. Springer Series on Environmental Management, 2016, , 155-191.	0.3	5
24	Plant Community Resistance to Invasion by Bromus Species: The Roles of Community Attributes, Bromus Interactions with Plant Communities, and Bromus Traits. Springer Series on Environmental Management, 2016, , 275-304.	0.3	33
25	Introduction: Exotic Annual Bromus in the Western USA. Springer Series on Environmental Management, 2016, , 1-7.	0.3	10
26	Assessing Restoration and Management Needs for Ecosystems Invaded by Exotic Annual Bromus Species. Springer Series on Environmental Management, 2016, , 339-370.	0.3	6
27	Using High-Resolution Future Climate Scenarios to Forecast Bromus tectorum Invasion in Rocky Mountain National Park. PLoS ONE, 2015, 10, e0117893.	2.5	39
28	Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands. Nature Communications, 2015, 6, 7710.	12.8	143
29	Linking Biophysical, Socioeconomic, and Political Effects of Climate Change on Agro-Ecosystems. Journal of Geoscience Education, 2014, 62, 343-352.	1.4	6
30	Resilience to Stress and Disturbance, and Resistance to Bromus tectorum L. Invasion in Cold Desert Shrublands of Western North America. Ecosystems, 2014, 17, 360-375.	3.4	336
31	Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 2014, 508, 517-520.	27.8	669
32	Roadway Deicer Effects on the Germination of Native Grasses and Forbs. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	10
33	Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?. Global Change Biology, 2013, 19, 3677-3687.	9.5	70
34	Fire promotes downy brome (Bromus tectorum L.) seed dispersal. Biological Invasions, 2013, 15, 1113-1123.	2.4	26
35	Managing Downy Brome (<i>Bromus tectorum</i>) in the Central Rockies: Land Manager Perspectives. Invasive Plant Science and Management, 2013, 6, 521-535.	1.1	19
36	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	12.6	30

Cynthia S Brown

#	Article	IF	CITATIONS
37	The influence of chilling requirement on the southern distribution limit of exotic Russian olive (Elaeagnus angustifolia) in western North America. Biological Invasions, 2012, 14, 1711-1724.	2.4	18
38	Distributional Changes and Range Predictions of Downy Brome (<i>Bromus tectorum</i>) in Rocky Mountain National Park. Invasive Plant Science and Management, 2011, 4, 173-182.	1.1	47
39	Abundance of introduced species at home predicts abundance away in herbaceous communities. Ecology Letters, 2011, 14, 274-281.	6.4	88
40	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	12.6	463
41	Effects of belowground resource use comlementarity on invasion of constructed grassland plant communities. Biological Invasions, 2010, 12, 1319-1334.	2.4	21
42	PERSPECTIVE: Linking concepts in the ecology and evolution of invasive plants: network analysis shows what has been most studied and identifies knowledge gaps. Evolutionary Applications, 2010, 3, 193-202.	3.1	11
43	SYNTHESIS: The role of adaptive transâ€generational plasticity in biological invasions of plants. Evolutionary Applications, 2010, 3, 179-192.	3.1	107
44	Tumbling: Use of Diffuse Knapweed (Centaurea diffusa) to Examine an Understudied Dispersal Mechanism. Invasive Plant Science and Management, 2010, 3, 301-309.	1.1	17
45	Non-native plant invasions of United States National Parks. Biological Invasions, 2009, 11, 2195-2207.	2.4	78
46	The Influence of Soil Inoculum and Nitrogen Availability on Restoration of Highâ€Elevation Steppe Communities Invaded by <i>Bromus tectorum</i> . Restoration Ecology, 2009, 17, 686-694.	2.9	31
47	First‥ear Responses of Cheatgrass Following <i>Tamarix </i> spp. Control and Restorationâ€Related Disturbances. Restoration Ecology, 2008, 16, 129-135.	2.9	9
48	High Phenotypic and Molecular Variation in Downy Brome (Bromus tectorum). Invasive Plant Science and Management, 2008, 1, 216-225.	1.1	20
49	Developing Regional Invasive Species Watch Lists: Colorado as a Case Study. Invasive Plant Science and Management, 2008, 1, 390-398.	1.1	4
50	Restoration Ecology and Invasive Plants in the Semiarid West. Invasive Plant Science and Management, 2008, 1, 399-413.	1.1	48
51	Comparisons of Mycorrhizal Responsiveness with Field Soil and Commercial Inoculum for Six Native Montane Species and Bromus tectorum. Restoration Ecology, 2007, 15, 44-52.	2.9	88
52	Community assembly and invasion: An experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8916-8920.	7.1	652
53	Quantifying the invasiveness of species. NeoBiota, 0, 21, 7-27.	1.0	63