
JoaquÃ-n Luis Sancho-Bru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1670485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A 3-D dynamic model of human finger for studying free movements. Journal of Biomechanics, 2001, 34, 1491-1500.	0.9	159
2	Influence of Prefabricated Post Material on Restored Teeth: Fracture Strength and Stress Distribution. Operative Dentistry, 2006, 31, 47-54.	0.6	126
3	An introductory study of common grasps used by adults during performance of activities of daily living. Journal of Hand Therapy, 2014, 27, 225-234.	0.7	105
4	A 3D Biomechanical Model of the Hand for Power Grip. Journal of Biomechanical Engineering, 2003, 125, 78-83.	0.6	72
5	A modified elastic foundation contact model for application in 3D models of the prosthetic knee. Medical Engineering and Physics, 2008, 30, 387-398.	0.8	39
6	Functional range of motion of the hand joints in activities of the International Classification of Functioning, Disability and Health. Journal of Hand Therapy, 2017, 30, 337-347.	0.7	39
7	Hand-transmitted vibration in power tools: Accomplishment of standards and users' perception. International Journal of Industrial Ergonomics, 2008, 38, 652-660.	1.5	38
8	A calibrated database of kinematics and EMG of the forearm and hand during activities of daily living. Scientific Data, 2019, 6, 270.	2.4	35
9	A Systematic Review of EMG Applications for the Characterization of Forearm and Hand Muscle Activity during Activities of Daily Living: Results, Challenges, and Open Issues. Sensors, 2021, 21, 3035.	2.1	29
10	Influence of prefabricated post dimensions on restored maxillary central incisors. Journal of Oral Rehabilitation, 2007, 34, 141-152.	1.3	28
11	Influence of material and diameter of preâ€fabricated posts on maxillary central incisors restored with crown. Journal of Oral Rehabilitation, 2009, 36, 737-747.	1.3	28
12	Using kinematic reduction for studying grasping postures. An application to power and precision grasp of cylinders. Applied Ergonomics, 2016, 56, 52-61.	1.7	27
13	Across-subject calibration of an instrumented glove to measure hand movement for clinical purposes. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 587-597.	0.9	25
14	Perception of products by progressive multisensory integration. A study on hammers. Applied Ergonomics, 2011, 42, 652-664.	1.7	23
15	Evaluation of Human Prehension Using Grasp Quality Measures. International Journal of Advanced Robotic Systems, 2012, 9, 112.	1.3	22
16	Grasp modelling with a biomechanical model of the hand. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 297-310.	0.9	22
17	An e-assessment approach for evaluation in engineering overcrowded groups. Computers and Education, 2012, 59, 732-740.	5.1	21
18	From Robot to Human Grasping Simulation. Cognitive Systems Monographs, 2014, , .	0.1	19

#	Article	IF	CITATIONS
19	Human hand kinematic data during feeding and cooking tasks. Scientific Data, 2019, 6, 167.	2.4	18
20	Validity of a simple videogrammetric method to measure the movement of all hand segments for clinical purposes. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2014, 228, 182-189.	1.0	17
21	Effect on manual skills of wearing instrumented gloves during manipulation. Journal of Biomechanics, 2020, 98, 109512.	0.9	17
22	Hand Kinematics Characterization While Performing Activities of Daily Living Through Kinematics Reduction. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28, 1556-1565.	2.7	17
23	Stiffness map of the grasping contact areas of the human hand. Journal of Biomechanics, 2013, 46, 2644-2650.	0.9	16
24	Characterisation of Grasp Quality Metrics. Journal of Intelligent and Robotic Systems: Theory and Applications, 2018, 89, 319-342.	2.0	16
25	Scalability of the Muscular Action in a Parametric 3D Model of the Index Finger. Annals of Biomedical Engineering, 2008, 36, 102-107.	1.3	14
26	Evaluation of Hand Motion Capture Protocol Using Static Computed Tomography Images: Application to an Instrumented Glove. Journal of Biomechanical Engineering, 2014, 136, 124501.	0.6	14
27	Analysis of lumbar flexion in sitting posture: Location of lumbar vertebrae with relation to easily identifiable skin marks. International Journal of Industrial Ergonomics, 2006, 36, 937-942.	1.5	13
28	Dynamic Flexion Stiffness of Foot Joints During Walking. Journal of the American Podiatric Medical Association, 2016, 106, 37-46.	0.2	13
29	Relevance of grasp types to assess functionality for personal autonomy. Journal of Hand Therapy, 2018, 31, 102-110.	0.7	13
30	Sharing of hand kinematic synergies across subjects in daily living activities. Scientific Reports, 2020, 10, 6116.	1.6	13
31	Grip force and force sharing in two different manipulation tasks with bottles. Ergonomics, 2017, 60, 957-966.	1.1	12
32	Identification of forearm skin zones with similar muscle activation patterns during activities of daily living. Journal of NeuroEngineering and Rehabilitation, 2018, 15, 91.	2.4	11
33	Effect of static foot posture on the dynamic stiffness of foot joints during walking. Gait and Posture, 2018, 62, 241-246.	0.6	9
34	Robot Grasping Foundations. Cognitive Systems Monographs, 2014, , 15-31.	0.1	9
35	Premolars restored with posts of different materials: fatigue analysis. Dental Materials Journal, 2011, 30, 881-886.	0.8	8
36	Mechanical performance of endodontic restorations with prefabricated posts: sensitivity analysis of parameters with a 3D finite element model. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 1108-1118.	0.9	8

#	Article	IF	CITATIONS
37	Characterization of grasp quality measures for evaluating robotic hands prehension. , 2014, , .		8
38	Towards a Realistic and Self-Contained Biomechanical Model of the Hand. , 0, , .		7
39	Hand Posture Prediction Using Neural Networks within a Biomechanical Model. International Journal of Advanced Robotic Systems, 2012, 9, 139.	1.3	7
40	Description and Validation of a Non-Invasive Technique to Measure the Posture of All Hand Segments. Journal of Biomechanical Engineering, 2003, 125, 917-922.	0.6	7
41	Evaluation of prosthetic hands prehension using grasp quality measures. , 2013, , .		6
42	Effect of assistive devices on hand and arm posture during activities of daily living. Applied Ergonomics, 2019, 76, 64-72.	1.7	6
43	Hand kinematics in osteoarthritis patients while performing functional activities. Disability and Rehabilitation, 2023, 45, 1124-1130.	0.9	6
44	Experimental strength of restorations with fibre posts at different stages, with and without using a simulated ligament. Journal of Oral Rehabilitation, 2012, 39, 188-197.	1.3	5
45	Kinematics reduction applied to the comparison of highly-pronated, normal and highly-supinated feet during walking. Gait and Posture, 2019, 68, 269-273.	0.6	5
46	Problems Using Data Gloves with Strain Gauges to Measure Distal Interphalangeal Joints' Kinematics. Sensors, 2022, 22, 3757.	2.1	5
47	The Model of the Human Hand. Cognitive Systems Monographs, 2014, , 123-173.	0.1	4
48	Synergy-Based Sensor Reduction for Recording the Whole Hand Kinematics. Sensors, 2021, 21, 1049.	2.1	4
49	Effect on hand kinematics when using assistive devices during activities of daily living. PeerJ, 2019, 7, e7806.	0.9	4
50	Using Sensorized Gloves and Dimensional Reduction for Hand Function Assessment of Patients with Osteoarthritis. Sensors, 2021, 21, 7897.	2.1	4
51	Interdependency of the maximum range of flexion–extension of hand metacarpophalangeal joints. Computer Methods in Biomechanics and Biomedical Engineering, 2016, 19, 1800-1807.	0.9	3
52	Estimation of the Abduction/Adduction Movement of the Metacarpophalangeal Joint of the Thumb. Applied Sciences (Switzerland), 2021, 11, 3158.	1.3	3
53	Kinematics and kinetics analysis of midfoot joints of 30 normal subjects during walking. Revista Española De PodologÃa, 2016, 27, e6-e12.	0.1	2
54	Human Grasp Evaluation. Cognitive Systems Monographs, 2014, , 175-206.	0.1	2

#	Article	IF	CITATIONS
55	Diagnostic and Formative E-Assessment in Engineering on a Moodle-Based VLE. , 0, , 378-398.		2
56	3D characterisation of the dynamics of foot joints of adults during walking. Gait pattern identification. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, 1015-1030.	0.9	1
57	O 075 – Exploration of the role of forearm muscles during activities of daily living. Gait and Posture, 2018, 65, 154-155.	0.6	1
58	Variability of the Dynamic Stiffness of Foot Joints: Effect of Gait Speed. Journal of the American Podiatric Medical Association, 2019, 109, 291-298.	0.2	1
59	Biomechanical function requirements of the wrist. Circumduction versus flexion/abduction range of motion. Journal of Biomechanics, 2020, 110, 109975.	0.9	1
60	Biomechanical Models of Endodontic Restorations. , 0, , .		1
61	INFLUENCE OF INCLUDING PERIODONTAL LIGAMENT WHEN MODELING TEETH RESTORED WITH POST. Journal of Biomechanics, 2012, 45, S172.	0.9	0
62	Applying New Educational Methodologies in Overcrowded Groups: Experiences in Basic Mechanics. , 0, , .		0
63	Applications of Robot Grasping Simulation. Cognitive Systems Monographs, 2014, , 67-119.	0.1	0