Vanessa D Capriles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1670280/publications.pdf

Version: 2024-02-01

43 papers 1,361 citations

361296 20 h-index 36 g-index

45 all docs

45 docs citations

45 times ranked

1295 citing authors

#	Article	IF	CITATIONS
1	Nutritional facts regarding commercially available gluten-free bread worldwide: Recent advances and future challenges. Critical Reviews in Food Science and Nutrition, 2023, 63, 693-705.	5.4	47
2	Defining Amaranth, Buckwheat and Quinoa Flour Levels in Gluten-Free Bread: A Simultaneous Improvement on Physical Properties, Acceptability and Nutrient Composition through Mixture Design. Foods, 2022, 11, 848.	1.9	9
3	An integrated instrumental and sensory techniques for assessing liking, softness and emotional related of gluten-free bread based on blended rice and bean flour. Food Research International, 2022, 154, 110999.	2.9	12
4	Novel Gluten-Free Bread with an Extract from Flaxseed By-Product: The Relationship between Water Replacement Level and Nutritional Value, Antioxidant Properties, and Sensory Quality. Molecules, 2022, 27, 2690.	1.7	13
5	Breakfast cereals with inulin obtained through thermoplastic extrusion: Chemical characteristics and physical and technological properties. LWT - Food Science and Technology, 2021, 137, 110390.	2.5	7
6	Potential of chickpea and psyllium in gluten-free breadmaking: Assessing bread's quality, sensory acceptability, and glycemic and satiety indexes. Food Hydrocolloids, 2021, 113, 106487.	5.6	35
7	Relationships between dough thermomechanical parameters and physical and sensory properties of gluten-free bread texture during storage. LWT - Food Science and Technology, 2021, 139, 110577.	2.5	13
8	Sorghum, millet and pseudocereals as ingredients for gluten-free whole-grain yeast rolls. International Journal of Gastronomy and Food Science, 2021, 23, 100293.	1.3	19
9	Correlations among SRC, Mixolab ® , process, and technological parameters of proteinâ€enriched biscuits. Cereal Chemistry, 2021, 98, 716-728.	1.1	3
10	Psyllium Improves the Quality and Shelf Life of Gluten-Free Bread. Foods, 2021, 10, 954.	1.9	23
11	Inulin as an ingredient for improvement of glycemic response and sensory acceptance of breakfast cereals. Food Hydrocolloids, 2021, 114, 106582.	5.6	7
12	What about glutenâ€free products? An insight on celiac consumers' opinions and expectations. Journal of Sensory Studies, 2021, 36, e12664.	0.8	19
13	An integrated instrumental and sensory approach to describe the effects of chickpea flour, psyllium, and their combination at reducing gluten-free bread staling. Food Packaging and Shelf Life, 2021, 28, 100659.	3.3	23
14	Defining Whole Grain Sorghum Flour and Water Levels to Improve Sensory and Nutritional Quality of Gluten-Free Breadâ€"A Factorial Design Approach. Applied Sciences (Switzerland), 2021, 11, 8186.	1.3	5
15	The impact of dough hydration level on gluten-free bread quality: A case study with chickpea flour. International Journal of Gastronomy and Food Science, 2021, 26, 100434.	1.3	8
16	Effects of oligofructose-enriched inulin addition before and after the extrusion process on the quality and postprandial glycemic response of corn-snacks. Food Bioscience, 2021, 43, 101263.	2.0	2
17	Innovative gluten-free breadmaking. , 2021, , 371-404.		9
18	Influence of pseudocereals on gluten-free bread quality: A study integrating dough rheology, bread physical properties and acceptability. Food Research International, 2021, 150, 110762.	2.9	14

#	Article	IF	CITATIONS
19	Effect of added psyllium and food enzymes on quality attributes and shelf life of chickpea-based gluten-free bread. LWT - Food Science and Technology, 2020, 134, 110025.	2.5	30
20	Potencial da farinha de feijão no desenvolvimento de pão sem glúten com valor nutricional agregado. Research, Society and Development, 2020, 9, e98991110929.	0.0	0
21	Modelling the effects of psyllium and water on dough parameters using Mixolab \hat{A}^{\otimes} and their relationship with physical properties and acceptability of gluten-free bread. Research, Society and Development, 2020, 9, e77591110589.	0.0	1
22	Analysis of ingredient and nutritional labeling of commercially available gluten-free bread in Brazil. International Journal of Food Sciences and Nutrition, 2019, 70, 562-569.	1.3	25
23	Modelling the effects of psyllium and water in gluten-free bread: An approach to improve the bread quality and glycemic response. Journal of Functional Foods, 2018, 42, 339-345.	1.6	56
24	Mixture Design Applied to the Development of Chickpeaâ€Based Glutenâ€Free Bread with Attractive Technological, Sensory, and Nutritional Quality. Journal of Food Science, 2018, 83, 188-197.	1.5	28
25	Knowledge, attitudes and practices of food handlers in food safety: An integrative review. Food Research International, 2017, 100, 53-62.	2.9	156
26	Development of glutenâ€free bread formulations containing whole chia flour with acceptable sensory properties. Food Science and Nutrition, 2017, 5, 1021-1028.	1.5	44
27	Approaches to reduce the glycemic response of gluten-free products: in vivo and in vitro studies. Food and Function, 2016, 7, 1266-1272.	2.1	38
28	Gluten-free breadmaking: Improving nutritional and bioactive compounds. Journal of Cereal Science, 2016, 67, 83-91.	1.8	90
29	Seafood safety: Knowledge, attitudes, self-reported practices and risk perceptions of seafood workers. Food Research International, 2015, 67, 19-24.	2.9	34
30	Novel Approaches in Glutenâ€Free Breadmaking: Interface between Food Science, Nutrition, and Health. Comprehensive Reviews in Food Science and Food Safety, 2014, 13, 871-890.	5.9	183
31	Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads. Food and Function, 2013, 4, 104-110.	2.1	145
32	Effect of incorporation of amaranth on the physical properties and nutritional value of cheese bread. Food Science and Technology, 2012, 32, 427-431.	0.8	24
33	Frutanos do tipo inulina e aumento da absorção de cálcio: uma revisão sistemática. Revista De Nutricao, 2012, 25, 147-159.	0.4	3
34	Avaliação da qualidade tecnológica de snacks obtidos por extrusão de grão integral de amaranto ou de farinha de amaranto desengordurada e suas misturas com fubá de milho. Brazilian Journal of Food Technology, 2012, 15, 21-29.	0.8	6
35	ReduçÃ \pm o da razÃ \pm o comprimento/diÃ \pm metro da extrusora e aumento da aceitabilidade de snacks à base de amaranto. Brazilian Journal of Food Technology, 2011, 14, 19-26.	0.8	2
36	Storage stability of snacks with reduced saturated and trans fatty acids contents. Food Science and Technology, 2009, 29, 690-695.	0.8	5

#	Article	IF	CITATIONS
37	Effect of fructansâ€based fat replacer on chemical composition, starch digestibility and sensory acceptability of corn snacks. International Journal of Food Science and Technology, 2009, 44, 1895-1901.	1.3	22
38	Metabolic osteopathy in celiac disease: importance of a gluten-free diet. Nutrition Reviews, 2009, 67, 599-606.	2.6	56
39	Marcador in vitro da resposta glicêmica dos alimentos como ferramenta de auxÃlio à prescrição e avaliação de dietas. Revista De Nutricao, 2009, 22, 549-557.	0.4	8
40	Effects of Processing Methods on Amaranth Starch Digestibility and Predicted Glycemic Index. Journal of Food Science, 2008, 73, H160-4.	1.5	83
41	Physical and Sensory Properties of Regular and Reduced-Fat Pound Cakes with Added Amaranth Flour. Cereal Chemistry, 2008, 85, 614-618.	1.1	23
42	Development and assessment of acceptability and nutritional properties of a light snack. Food Science and Technology, 2007, 27, 562-566.	0.8	10
43	Desenvolvimento de salgadinhos com teores reduzidos de gordura saturada e de ácidos graxos trans. Food Science and Technology, 2005, 25, 363-369.	0.8	7