Robert Brooke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1670040/publications.pdf

Version: 2024-02-01

32 papers 1,301 citations

³⁶¹⁴¹³
20
h-index

31 g-index

32 all docs 32 docs citations

times ranked

32

1746 citing authors

#	Article	IF	CITATIONS
1	Ultrathin Paper Microsupercapacitors for Electronic Skin Applications. Advanced Materials Technologies, 2022, 7, .	5.8	15
2	Combining Vapor Phase Polymerization and Screen Printing for Printed Electronics on Flexible Substrates. Advanced Materials Technologies, 2022, 7, 2101665.	5 . 8	16
3	Electrochromic Displays Manufactured by a Combination of Vapor Phase Polymerization and Screen Printing. Advanced Materials Technologies, 2022, 7, .	5 . 8	9
4	Large-scale paper supercapacitors on demand. Journal of Energy Storage, 2022, 50, 104191.	8.1	23
5	Printable carbon-based supercapacitors reinforced with cellulose and conductive polymers. Journal of Energy Storage, 2022, 50, 104224.	8.1	22
6	Nanocellulose based carbon ink and its application in electrochromic displays and supercapacitors. Flexible and Printed Electronics, 2021, 6, 045011.	2.7	8
7	Spray-coated paper supercapacitors. Npj Flexible Electronics, 2020, 4, .	10.7	50
8	Laser-induced graphitization of a forest-based ink for use in flexible and printed electronics. Npj Flexible Electronics, 2020, 4, .	10.7	32
9	Unraveling vertical inhomogeneity in vapour phase polymerized PEDOT:Tos films. Journal of Materials Chemistry A, 2020, 8, 18726-18734.	10.3	22
10	Improving the Performance of Paper Supercapacitors Using Redox Molecules from Plants. Advanced Sustainable Systems, 2019, 3, 1900050.	5. 3	23
11	Twinning Lignosulfonate with a Conducting Polymer via Counterâ€lon Exchange for Largeâ€Scale Electrical Storage. Advanced Sustainable Systems, 2019, 3, 1900039.	5.3	17
12	On the anomalous optical conductivity dispersion of electrically conducting polymers: ultra-wide spectral range ellipsometry combined with a Drude–Lorentz model. Journal of Materials Chemistry C, 2019, 7, 4350-4362.	5 . 5	36
13	Greyscale and Paper Electrochromic Polymer Displays by UV Patterning. Polymers, 2019, 11, 267.	4.5	23
14	Supercapacitors on demand: all-printed energy storage devices with adaptable design. Flexible and Printed Electronics, 2019, 4, 015006.	2.7	21
15	Controlling the electrochromic properties of conductive polymers using UV-light. Journal of Materials Chemistry C, 2018, 6, 4663-4670.	5.5	36
16	Bulk electronic transport impacts on electron transfer at conducting polymer electrode–electrolyte interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11899-11904.	7.1	61
17	Vapor phase synthesized poly(3,4-ethylenedioxythiophene)-trifluoromethanesulfonate as a transparent conductor material. Journal of Materials Chemistry A, 2018, 6, 21304-21312.	10.3	37
18	Recent advances in the synthesis of conducting polymers from the vapour phase. Progress in Materials Science, 2017, 86, 127-146.	32.8	115

#	Article	IF	Citations
19	Infrared electrochromic conducting polymer devices. Journal of Materials Chemistry C, 2017, 5, 5824-5830.	5.5	94
20	Poly(3,4-ethylenedioxythiophene)-tosylate (PEDOT-Tos) electrodes in thermogalvanic cells. Journal of Materials Chemistry A, 2017, 5, 19619-19625.	10.3	44
21	Freestanding electrochromic paper. Journal of Materials Chemistry C, 2016, 4, 9680-9686.	5.5	53
22	Patterning and Conductivity Modulation of Conductive Polymers by UV Light Exposure. Advanced Functional Materials, 2016, 26, 6950-6960.	14.9	31
23	Organic energy devices from ionic liquids and conducting polymers. Journal of Materials Chemistry C, 2016, 4, 1550-1556.	5.5	15
24	Hydrophilic Organic Electrodes on Flexible Hydrogels. ACS Applied Materials & Electrodes, 2016, 8, 974-982.	8.0	23
25	Diffuse color patterning using blended electrochromic polymers for proofâ€ofâ€concept adaptive camouflage plaques. Journal of Applied Polymer Science, 2015, 132, .	2.6	19
26	Significant Electronic Thermal Transport in the Conducting Polymer Poly(3,4â€ethylenedioxythiophene). Advanced Materials, 2015, 27, 2101-2106.	21.0	176
27	Effect of oxidant on the performance of conductive polymer films prepared by vacuum vapor phase polymerization for smart window applications. Smart Materials and Structures, 2015, 24, 035016.	3.5	24
28	Acido-basic control of the thermoelectric properties of poly(3,4-ethylenedioxythiophene)tosylate (PEDOT-Tos) thin films. Journal of Materials Chemistry C, 2015, 3, 10616-10623.	5.5	147
29	Enhancing the morphology and electrochromic stability of polypyrrole via PEG–PPG–PEG templating in vapour phase polymerisation. European Polymer Journal, 2014, 51, 28-36.	5.4	18
30	Evidence for †bottom up' growth during vapor phase polymerization of conducting polymers. Polymer, 2014, 55, 3458-3460.	3.8	32
31	Inkjet printing and vapor phase polymerization: patterned conductive PEDOT for electronic applications. Journal of Materials Chemistry C, 2013, 1, 3353.	5.5	56
32	Upscalable ultra thick rayon carbon felt based hybrid organicâ€inorganic electrodes for high energy density supercapacitors. Energy Storage, 0, , .	4.3	3