Paul Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/167003/publications.pdf Version: 2024-02-01

		13827	24179
111	23,516	67	110
papers	citations	h-index	g-index
117	117	117	16366
all docs	docs citations	times ranked	citing authors

DALLI ANDERSON

#	Article	IF	CITATIONS
1	Early rRNA processing is a stress-dependent regulatory event whose inhibition maintains nucleolar integrity. Nucleic Acids Research, 2022, 50, 1033-1051.	6.5	27
2	Molecular mechanisms of stress granule assembly and disassembly. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118876.	1.9	177
3	Reg1 and Snf1 regulate stressâ€induced relocalization of protein phosphataseâ€1 to cytoplasmic granules. FEBS Journal, 2021, 288, 4833-4848.	2.2	5
4	<i>In lysate</i> RNA digestion provides insights into the angiogenin's specificity towards transfer RNAs. RNA Biology, 2021, 18, 2546-2555.	1.5	12
5	Spatiotemporal Proteomic Analysis of Stress Granule Disassembly Using APEX Reveals Regulation by SUMOylation and Links to ALS Pathogenesis. Molecular Cell, 2020, 80, 876-891.e6.	4.5	154
6	Mammalian stress granules and P bodies at a glance. Journal of Cell Science, 2020, 133, .	1.2	198
7	eIF4G has intrinsic G-quadruplex binding activity that is required for tiRNA function. Nucleic Acids Research, 2020, 48, 6223-6233.	6.5	55
8	TOP mRNPs: Molecular Mechanisms and Principles of Regulation. Biomolecules, 2020, 10, 969.	1.8	43
9	Isolation and initial structure-functional characterization of endogenous tRNA-derived stress-induced RNAs. RNA Biology, 2020, 17, 1116-1124.	1.5	41
10	Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization. Cell, 2020, 181, 306-324.e28.	13.5	543
11	FXR1 splicing is important for muscle development and biomolecular condensates in muscle cells. Journal of Cell Biology, 2020, 219, .	2.3	30
12	Stress Granules and Processing Bodies in Translational Control. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032813.	2.3	325
13	Phosphorylation of G3BP1-S149 does not influence stress granule assembly. Journal of Cell Biology, 2019, 218, 2425-2432.	2.3	39
14	Nitric oxide triggers the assembly of "type II―stress granules linked to decreased cell viability. Cell Death and Disease, 2018, 9, 1129.	2.7	34
15	Stress-specific differences in assembly and composition of stress granules and related foci. Journal of Cell Science, 2017, 130, 927-937.	1.2	203
16	Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Molecular Cell, 2017, 65, 1044-1055.e5.	4.5	437
17	The FASTK family of proteins: emerging regulators of mitochondrial RNA biology. Nucleic Acids Research, 2017, 45, 10941-10947.	6.5	62
18	Methods to Classify Cytoplasmic Foci as Mammalian Stress Granules. Journal of Visualized Experiments, 2017, , .	0.2	21

Paul Anderson

#	Article	IF	CITATIONS
19	NEDDylation promotes stress granule assembly. Nature Communications, 2016, 7, 12125.	5.8	61
20	RNA-Seeded Functional Amyloids Balance Growth and Survival. Developmental Cell, 2016, 39, 131-132.	3.1	8
21	Mechanistic insights into mammalian stress granule dynamics. Journal of Cell Biology, 2016, 215, 313-323.	2.3	296
22	YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression. Nucleic Acids Research, 2016, 44, 6949-6960.	6.5	189
23	G3BP–Caprin1–USP10 complexes mediate stress granule condensation and associate with 40S subunits. Journal of Cell Biology, 2016, 212, 845-60.	2.3	480
24	Deletion of FAST (Fas-activated serine/threonine phosphoprotein) ameliorates immune complex arthritis in mice. Modern Rheumatology, 2016, 26, 630-632.	0.9	4
25	Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation. Oncotarget, 2016, 7, 30307-30322.	0.8	52
26	Stress granules, P-bodies and cancer. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 861-870.	0.9	333
27	A Mitochondria-Specific Isoform of FASTK Is Present In Mitochondrial RNA Granules and Regulates Gene Expression and Function. Cell Reports, 2015, 10, 1110-1121.	2.9	77
28	Influenza A Virus Host Shutoff Disables Antiviral Stress-Induced Translation Arrest. PLoS Pathogens, 2014, 10, e1004217.	2.1	117
29	Alternative translation initiation in immunity: MAVS learns new tricks. Trends in Immunology, 2014, 35, 188-189.	2.9	3
30	G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18201-18206.	3.3	264
31	tRNA fragments in human health and disease. FEBS Letters, 2014, 588, 4297-4304.	1.3	321
32	Postâ€ŧranscriptional regulatory networks in immunity. Immunological Reviews, 2013, 253, 253-272.	2.8	95
33	Stress granules and cell signaling: more than just a passing phase?. Trends in Biochemical Sciences, 2013, 38, 494-506.	3.7	514
34	Fas-activated Ser/Thr phosphoprotein (FAST) is a eukaryotic initiation factor 4E-binding protein that regulates mRNA stability and cell survival. Translation, 2013, 1, e24047.	2.9	1
35	Selenite targets eIF4E-binding protein-1 to inhibit translation initiation and induce the assembly of non-canonical stress granules. Nucleic Acids Research, 2012, 40, 8099-8110.	6.5	98
36	Genome-wide Identification and Quantitative Analysis of Cleaved tRNA Fragments Induced by Cellular Stress. Journal of Biological Chemistry, 2012, 287, 42708-42725.	1.6	181

Paul Anderson

#	Article	IF	CITATIONS
37	The translational repressor T-cell intracellular antigen-1 (TIA-1) is a key modulator of Th2 and Th17 responses driving pulmonary inflammation induced by exposure to house dust mite. Immunology Letters, 2012, 146, 8-14.	1.1	10
38	Stress granules contribute to α-globin homeostasis in differentiating erythroid cells. Biochemical and Biophysical Research Communications, 2012, 420, 768-774.	1.0	16
39	Hydrogen peroxide induces stress granule formation independent of elF2α phosphorylation. Biochemical and Biophysical Research Communications, 2012, 423, 763-769.	1.0	113
40	Hydrogen peroxide induces stress granule formation independent of eukaryotic initiation factor $2\hat{l}\pm$ phosphorylation. , 2012, , .		1
41	Angiogenin-Induced tRNA Fragments Inhibit Translation Initiation. Molecular Cell, 2011, 43, 613-623.	4.5	776
42	Stress-Induced Ribonucleases. Nucleic Acids and Molecular Biology, 2011, , 115-134.	0.2	3
43	Stress puts TIA on TOP. Genes and Development, 2011, 25, 2119-2124.	2.7	40
44	The role of posttranslational modifications in the assembly of stress granules. Wiley Interdisciplinary Reviews RNA, 2010, 1, 486-493.	3.2	55
45	elF5A Promotes Translation Elongation, Polysome Disassembly and Stress Granule Assembly. PLoS ONE, 2010, 5, e9942.	1.1	97
46	Angiogenin-induced tRNA-derived Stress-induced RNAs Promote Stress-induced Stress Granule Assembly. Journal of Biological Chemistry, 2010, 285, 10959-10968.	1.6	401
47	Fas-Activated Serine/Threonine Phosphoprotein Promotes Immune-Mediated Pulmonary Inflammation. Journal of Immunology, 2010, 184, 5325-5332.	0.4	19
48	Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration. Biochemical and Biophysical Research Communications, 2010, 401, 440-446.	1.0	60
49	Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nature Reviews Immunology, 2010, 10, 24-35.	10.6	251
50	Stress granules. Current Biology, 2009, 19, R397-R398.	1.8	252
51	Intrinsic mRNA stability helps compose the inflammatory symphony. Nature Immunology, 2009, 10, 233-234.	7.0	32
52	RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nature Reviews Molecular Cell Biology, 2009, 10, 430-436.	16.1	743
53	Chapter 4 Regulation of Translation by Stress Granules and Processing Bodies. Progress in Molecular Biology and Translational Science, 2009, 90, 155-185.	0.9	120
54	Angiogenin cleaves tRNA and promotes stress-induced translational repression. Journal of Cell Biology, 2009, 185, 35-42.	2.3	733

#	Article	IF	CITATIONS
55	A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nature Cell Biology, 2008, 10, 1224-1231.	4.6	357
56	Post-transcriptional control of cytokine production. Nature Immunology, 2008, 9, 353-359.	7.0	369
57	Reprogramming mRNA translation during stress. Current Opinion in Cell Biology, 2008, 20, 222-226.	2.6	208
58	Stress granules: the Tao of RNA triage. Trends in Biochemical Sciences, 2008, 33, 141-150.	3.7	948
59	Chapter 26 Realâ€Time and Quantitative Imaging of Mammalian Stress Granules and Processing Bodies. Methods in Enzymology, 2008, 448, 521-552.	0.4	103
60	Genome-wide Analysis Identifies Interleukin-10 mRNA as Target of Tristetraprolin. Journal of Biological Chemistry, 2008, 283, 11689-11699.	1.6	217
61	T-cell Intracellular Antigen-1 (TIA-1)-induced Translational Silencing Promotes the Decay of Selected mRNAs. Journal of Biological Chemistry, 2007, 282, 30070-30077.	1.6	64
62	Tristetraprolin (TTP)-14-3-3 Complex Formation Protects TTP from Dephosphorylation by Protein Phosphatase 2a and Stabilizes Tumor Necrosis Factor-1± mRNA. Journal of Biological Chemistry, 2007, 282, 3766-3777.	1.6	172
63	In a tight spot: ARE-mRNAs at processing bodies. Genes and Development, 2007, 21, 627-631.	2.7	33
64	Elucidation of a C-Rich Signature Motif in Target mRNAs of RNA-Binding Protein TIAR. Molecular and Cellular Biology, 2007, 27, 6806-6817.	1.1	70
65	Fas-activated serine/threonine phosphoprotein (FAST) is a regulator of alternative splicing. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11370-11375.	3.3	32
66	Mammalian Stress Granules and Processing Bodies. Methods in Enzymology, 2007, 431, 61-81.	0.4	573
67	Posttranscriptional Mechanisms Regulating the Inflammatory Response. Advances in Immunology, 2006, 89, 1-37.	1.1	84
68	RNA granules. Journal of Cell Biology, 2006, 172, 803-808.	2.3	982
69	AREâ€mRNA degradation requires the 5′–3′ decay pathway. EMBO Reports, 2006, 7, 72-77.	2.0	207
70	Eukaryotic Initiation Factor 2α-independent Pathway of Stress Granule Induction by the Natural Product Pateamine A. Journal of Biological Chemistry, 2006, 281, 32870-32878.	1.6	229
71	Granzyme B and natural killer (NK) cell death. Modern Rheumatology, 2005, 15, 315-322.	0.9	15
72	Pin1: a proline isomerase that makes you wheeze?. Nature Immunology, 2005, 6, 1211-1212.	7.0	9

#	Article	IF	CITATIONS
73	Tumor necrosis factor inhibitors: Clinical implications of their different immunogenicity profiles. Seminars in Arthritis and Rheumatism, 2005, 34, 19-22.	1.6	210
74	Mechanisms of differential immunogenicity of tumor necrosis factor inhibitors. Current Rheumatology Reports, 2005, 7, 3-9.	2.1	17
75	Heme-regulated Inhibitor Kinase-mediated Phosphorylation of Eukaryotic Translation Initiation Factor 2 Inhibits Translation, Induces Stress Granule Formation, and Mediates Survival upon Arsenite Exposure. Journal of Biological Chemistry, 2005, 280, 16925-16933.	1.6	362
76	Importance of eIF2α Phosphorylation and Stress Granule Assembly in Alphavirus Translation Regulation. Molecular Biology of the Cell, 2005, 16, 3753-3763.	0.9	219
77	HuR as a Negative Posttranscriptional Modulator in Inflammation. Molecular Cell, 2005, 19, 777-789.	4.5	225
78	The tumor necrosis factor-α AU-rich element inhibits the stable association of the 40S ribosomal subunit with RNA transcripts. Biochemical and Biophysical Research Communications, 2005, 333, 1100-1106.	1.0	9
79	A Place for RNAi. Developmental Cell, 2005, 9, 311-312.	3.1	8
80	Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. Journal of Cell Biology, 2005, 169, 871-884.	2.3	1,237
81	FAST Is a Survival Protein That Senses Mitochondrial Stress and Modulates TIA-1-Regulated Changes in Protein Expression. Molecular and Cellular Biology, 2004, 24, 10718-10732.	1.1	52
82	Stress Granule Assembly Is Mediated by Prion-like Aggregation of TIA-1. Molecular Biology of the Cell, 2004, 15, 5383-5398.	0.9	859
83	Arthritis suppressor genes TIA-1 and TTP dampen the expression of tumor necrosis factor α, cyclooxygenase 2, and inflammatory arthritis. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2011-2016.	3.3	181
84	MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO Journal, 2004, 23, 1313-1324.	3.5	457
85	Post-transcriptional regulation of proinflammatory proteins. Journal of Leukocyte Biology, 2004, 76, 42-47.	1.5	101
86	FAST is a BCL-XL-associated mitochondrial protein. Biochemical and Biophysical Research Communications, 2004, 318, 95-102.	1.0	27
87	Geldanamycin inhibits the production of inflammatory cytokines in activated macrophages by reducing the stability and translation of cytokine transcripts. Arthritis and Rheumatism, 2003, 48, 541-550.	6.7	57
88	Regulation of Cyclooxygenase-2 Expression by the Translational Silencer TIA-1. Journal of Experimental Medicine, 2003, 198, 475-481.	4.2	190
89	Evidence That Ternary Complex (eIF2-GTP-tRNAiMet)–Deficient Preinitiation Complexes Are Core Constituents of Mammalian Stress Granules. Molecular Biology of the Cell, 2002, 13, 195-210.	0.9	519
90	&cestchinlongVisibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation. Cell Stress and Chaperones, 2002, 7, 213.	1.2	226

#	Article	IF	CITATIONS
91	Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis. EMBO Journal, 2002, 21, 5141-5150.	3.5	93
92	Stressful initiations. Journal of Cell Science, 2002, 115, 3227-3234.	1.2	325
93	Stressful initiations. Journal of Cell Science, 2002, 115, 3227-34.	1.2	279
94	A novel role for interleukin-18 in human natural killer cell death: High serum levels and low natural killer cell numbers in patients with systemic autoimmune diseases. Arthritis and Rheumatism, 2001, 44, 884-892.	6.7	84
95	TIA-1 regulates the production of tumor necrosis factor ? in macrophages, but not in lymphocytes. Arthritis and Rheumatism, 2001, 44, 2879-2887.	6.7	26
96	Signal transduction in rheumatoid arthritis. Best Practice and Research in Clinical Rheumatology, 2001, 15, 789-803.	1.4	22
97	A novel role for interleukinâ€18 in human natural killer cell death: High serum levels and low natural killer cell numbers in patients with systemic autoimmune diseases. Arthritis and Rheumatism, 2001, 44, 884-892.	6.7	3
98	Small nucleolar RNP scleroderma autoantigens associate with phosphorylated serine/arginine splicing factors during apoptosis. Arthritis and Rheumatism, 2000, 43, 1327-1336.	6.7	24
99	TIA-1 is a translational silencer that selectively regulates the expression of TNF-α. EMBO Journal, 2000, 19, 4154-4163.	3.5	451
100	The Apoptosis-Promoting Factor TIA-1 Is a Regulator of Alternative Pre-mRNA Splicing. Molecular Cell, 2000, 6, 1089-1098.	4.5	252
101	Death, autoantigen modifications, and tolerance. Arthritis Research, 2000, 2, 101.	2.0	140
102	Dynamic Shuttling of Tia-1 Accompanies the Recruitment of mRNA to Mammalian Stress Granules. Journal of Cell Biology, 2000, 151, 1257-1268.	2.3	678
103	RNA-Binding Proteins Tia-1 and Tiar Link the Phosphorylation of Eif-2α to the Assembly of Mammalian Stress Granules. Journal of Cell Biology, 1999, 147, 1431-1442.	2.3	1,057
104	Posttranslational protein modifications, apoptosis, and the bypass of tolerance to autoantigens. Arthritis and Rheumatism, 1998, 41, 1152-1160.	6.7	191
105	Activation-induced NK cell death triggered by CD2 stimulation. European Journal of Immunology, 1998, 28, 1292-1300.	1.6	29
106	Proteins Phosphorylated during Stress-induced Apoptosis Are Common Targets for Autoantibody Production in Patients with Systemic Lupus Erythematosus. Journal of Experimental Medicine, 1997, 185, 843-854.	4.2	230
107	Individual RNA Recognition Motifs of TIA-1 and TIAR Have Different RNA Binding Specificities. Journal of Biological Chemistry, 1996, 271, 2783-2788.	1.6	203
108	Association of a 70-kDa tyrosine phosphoprotein with the CD16:ζ:γ complex expressed in human natural killer cells. European Journal of Immunology, 1993, 23, 1872-1876.	1.6	69

#	Article	IF	CITATIONS
109	A polyadenylate binding protein localized to the granules of cytolytic lymphocytes induces DNA fragmentation in target cells. Cell, 1991, 67, 629-639.	13.5	375
110	Biochemical identification of a direct physical interaction between the CD4: p56lck and Ti(TcR)/CD3 complexes. European Journal of Immunology, 1991, 21, 1663-1668.	1.6	86
111	CD4CD45R cells are preferentially activated through the CD2 pathway. European Journal of Immunology, 1988, 18, 1473-1476.	1.6	32