
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1669989/publications.pdf Version: 2024-02-01

SANDRO RAO

#	Article	IF	CITATIONS
1	High-Performance Temperature Sensor Based on 4H-SiC Schottky Diodes. IEEE Electron Device Letters, 2015, 36, 720-722.	3.9	69
2	An Ultralow-Voltage Energy-Efficient Level Shifter. IEEE Transactions on Circuits and Systems II: Express Briefs, 2017, 64, 61-65.	3.0	67
3	4H-SiC p-i-n diode as Highly Linear Temperature Sensor. IEEE Transactions on Electron Devices, 2016, 63, 414-418.	3.0	47
4	85–440 K Temperature Sensor Based on a 4H-SiC Schottky Diode. IEEE Sensors Journal, 2016, 16, 6537-6542.	4.7	40
5	Use of Amorphous Silicon for Active Photonic Devices. IEEE Transactions on Electron Devices, 2013, 60, 1495-1505.	3.0	36
6	Electro-optical modulation at 1550 nm in an as-deposited hydrogenated amorphous silicon p-i-n waveguiding device. Optics Express, 2011, 19, 2941.	3.4	33
7	Electro-optically induced absorption in α-Si:H/α-SiCN waveguiding multistacks. Optics Express, 2008, 16, 7540.	3.4	32
8	Simulation and analysis of the current–voltage–temperature characteristics of Al/Ti/4H-SiC Schottky barrier diodes. Japanese Journal of Applied Physics, 2019, 58, 014002.	1.5	29
9	Highly Linear Temperature Sensor Based on 4H-Silicon Carbide p-i-n Diodes. IEEE Electron Device Letters, 2015, 36, 1205-1208.	3.9	28
10	Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm. Journal of Applied Physics, 2013, 114, .	2.5	26
11	A 25 ns switching time MachÂZehnder modulator in as-deposited a-Si:H. Optics Express, 2012, 20, 9351.	3.4	22
12	Analysis of different forward current–voltage behaviours of Al implanted 4H-SiC vertical p–i–n diodes. Solid-State Electronics, 2015, 109, 12-16.	1.4	22
13	Electrooptical Modulating Device Based on a CMOS-Compatible <formula formulatype="inline"> <tex notation="TeX">\${m alpha}\$</tex> </formula> -Si:H/ <formula formulatype="inline"> <tex notation="TeX">\${m alpha}\$</tex> -SiCN Multistack Waveguide, IEEE Journal of Selected Topics in Ouantum Electronics, 2010, 16, 173-178.</formula 	2.9	16
14	V ₂ O ₅ /4H-SiC Schottky Diode Temperature Sensor: Experiments and Model. IEEE Transactions on Electron Devices, 2018, 65, 687-694.	3.0	15
15	Integrated Amorphous Silicon p-i-n Temperature Sensor for CMOS Photonics. Sensors, 2016, 16, 67.	3.8	13
16	Low-loss amorphous silicon waveguides grown by PECVD on indium tin oxide. Journal of the European Optical Society-Rapid Publications, 0, 5, .	1.9	12
17	Temperature Sensing Characteristics and Long Term Stability of Power LEDs Used for Voltage vs. Junction Temperature Measurements and Related Procedure. IEEE Access, 2020, 8, 43057-43066.	4.2	12
18	All-optical modulation in a CMOS-compatible amorphous silicon-based device. Journal of the European Optical Society-Rapid Publications, 0, 7, .	1.9	11

#	Article	IF	CITATIONS
19	A V2O5/4H-SiC Schottky diode-based PTAT sensor operating in a wide range of bias currents. Sensors and Actuators A: Physical, 2018, 269, 171-174.	4.1	11
20	Amorphous silicon waveguides grown by PECVD on an Indium Tin Oxide buried contact. Optics Communications, 2012, 285, 3088-3092.	2.1	8
21	Hydrogenated amorphous silicon multi-SOI waveguide modulator with low voltage–length product. Optics and Laser Technology, 2013, 45, 204-208.	4.6	8
22	Electro-optical effect in hydrogenated amorphous silicon-based waveguide-integrated p-i-p and p-i-n configurations. Optical Engineering, 2013, 52, 087110.	1.0	8
23	An Efficient 4H-SiC Photodiode for UV Sensing Applications. Electronics (Switzerland), 2021, 10, 2517.	3.1	8
24	Numerical Analysis of Electro-Optical Modulators Based on the Amorphous Silicon Technology. Journal of Lightwave Technology, 2014, 32, 2399-2407.	4.6	7
25	Electro-Optical Modulation in a 4H-SiC Slab Induced by Carrier Depletion in a Schottky Diode. IEEE Photonics Technology Letters, 2018, 30, 877-880.	2.5	7
26	Electro-optically induced absorption in \$alpha\$-Si:H/\$alpha\$-SiCN waveguiding multistacks. Journal of the European Optical Society-Rapid Publications, 0, 5, .	1.9	6
27	Highâ^'Performance 4Hâ^'SiC UV pâ^'iâ^'n Photodiode: Numerical Simulations and Experimental Results. Electronics (Switzerland), 2022, 11, 1839.	3.1	6
28	Hydrogenated amorphous silicon phase-change device based on a p–i–p waveguiding configuration. Optics and Laser Technology, 2013, 53, 17-21.	4.6	5
29	Use of 4H-SiC-based Diodes as Temperature Sensors. , 2019, , .		5
30	A Technique for Improving the Precision of the Direct Measurement of Junction Temperature in Power Light-Emitting Diodes. Sensors, 2021, 21, 3113.	3.8	5
31	Temperature dependence of the thermo-optic coefficient in 4H-SiC and GaN slabs at the wavelength of 1550Ânm. Scientific Reports, 2022, 12, 4809.	3.3	5
32	Progress towards a high-performing a-Si:H-based electro-optic modulator. Journal of Optics (United) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
33	Divanadium Pentoxide/4H-silicon Carbide: A Schottky Contact for Highly Linear Temperature Sensors. Procedia Engineering, 2016, 168, 1003-1006.	1.2	4
34	A Direct Junction Temperature Measurement Technique for Power LEDs. , 2018, , .		4
35	Power MOSFET Intrinsic Diode as a Highly Linear Junction Temperature Sensor. IEEE Sensors Journal, 2019, 19, 11034-11040.	4.7	4

 $[\]frac{1.55 \,\hat{l}_{4}}{467-469}$. $\frac{1.55 \,\hat{l}_{4}}{467-469}$. $\frac{1.55 \,\hat{l}_{4}}{2}$ switch. Optik, 2012, 123, $\frac{2.9}{3}$

#	Article	IF	CITATIONS
37	Low energy/delay overhead level shifter for wideâ€range voltage conversion. International Journal of Circuit Theory and Applications, 2017, 45, 1637-1646.	2.0	3
38	Voltage doubler rectifier based on 4H-SiC diodes for high-temperatures energy harvesting applications. , 2015, , .		2
39	V2O5/4H-SiC Schottky diode as a high performance PTAT sensor. , 2016, , .		2
40	Electro-optical modulating multistack device based on the CMOS-compatible technology of amorphous silicon. Journal of the European Optical Society-Rapid Publications, 0, 5, .	1.9	1
41	Characterization of an electrically induced refractive index change in a hydrogenated amorphous silicon multistack waveguide. , 2011, , .		1
42	CMOS-compatible amorphous silicon photonic layer integrated with VLSI electronics. , 2014, , .		1
43	Schottky Graphene/Silicon Photodetectors Based on Internal Photoemission Effect. , 2015, , .		1
44	Piezoelectric energy harvesting system for hostile environments. , 2016, , .		1
45	Junction Temperature Measurement in Optically-Controlled Power Mosfet. , 2021, , .		1
46	High Perfomance Integrated Temperature Sensor based on Amorphous Silicon Diode for Photonics on CMOS. , 2016, , .		1
47	Amorphous silicon based active photonic devices. , 0, , .		0
48	Design, fabrication, and characterization of an α-Si:H/α-SiCN multistack waveguide for electro optical modulation. , 2008, , .		0
49	Electro-optical modulation and photoinduced absorption effects on a CMOS-compatible α-Si:H/α-SiCN multistack waveguide. , 2010, , .		0
50	Amorphous silicon waveguides grown by PECVD on an Indium Tin Oxide buried contact. , 2010, , .		0
51	Electro-Optical Modulating Multistack Device Based on the CMOS-Compatible Technology of Amorphous Silicon. Lecture Notes in Electrical Engineering, 2011, , 285-289.	0.4	0
52	CMOS-compatible electro-optical Mach-Zehnder modulator based on the amorphous silicon technology. , 2012, , .		0
53	Use of amorphous silicon for the design of a photonic crystal based MZ modulator at 1.55μ m. , 2015, , .		0

54 Improving the gas sensing performance of chemiresistors by LED irradiation. , 2015, , .

0

0

#	Article	IF	CITATIONS
55	Temperature sensor based on 4H-SiC diodes for hostile environments. , 2015, , .		0
56	An Experimental Study on the Performance of Two Temperature Sensors Based on 4H-SiC Diodes. Procedia Engineering, 2016, 168, 729-732.	1.2	0
57	Thermo-optic Effect of 4H-silicon Carbide at Fiber-optic Communication Wavelengths. , 2019, , .		0
58	CHARACTERIZATION OF A PIEZOELECTRIC CAP USING A FIBER BRAGG GRATING. , 2008, , .		0
59	DESIGN, FABRICATION, AND CHARACTERIZATION OF AN $\hat{1}\pm$ -Si:H/ $\hat{1}\pm$ -SiCN MULTISTACK WAVEGUIDE FOR ELECTRO OPTICAL MODULATION. , 2008, , .		0
60	Near-infrared Silicon Schottky Photodiodes based on Non-metallic Materials. , 2016, , .		0
61	Capacitance in Waveguide-Integrated Hydrogenated Amorphous Silicon <i>p-i-n</i> Diodes for Active Photonic Devices. Journal of Nanoelectronics and Optoelectronics, 2016, 11, 395-400.	0.5	0
62	Power LED junction temperature readout circuit based on an off-the-shelf LED driver. , 2020, , .		0
63	Junction temperature measurement in optically-activated power MOSFET. Journal of Optics (United) Tj ETQq1 1 0.	784314 r 2.2	gBT /Overlo

64 Near-Infrared Graphene/4H-SiC Schottky Photodetectors. , 2022, , .