Dhevalapally B Ramachary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/166994/publications.pdf Version: 2024-02-01

94433 118850 4,231 93 37 62 citations h-index g-index papers 149 149 149 2762 citing authors docs citations all docs times ranked

#	Article	IF	CITATIONS
1	The seven-step, one-pot regioselective synthesis of biologically important 3-aryllawsones: scope and applications. Organic and Biomolecular Chemistry, 2022, 20, 3948-3954.	2.8	3
2	Lawsone as synthon in the catalytic asymmetric reactions. Tetrahedron, 2022, , 132793.	1.9	4
3	Organocatalytic Oneâ€Pot Synthesis of Pseudoâ€Terpenoids. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
4	Catalytic Asymmetric Synthesis of Benzobicyclo[3.2.1]octanes. Chemistry - A European Journal, 2021, 27, 10563-10568.	3.3	8
5	Organocatalytic Enantiospecific Total Synthesis of Butenolides. Molecules, 2021, 26, 4320.	3.8	7
6	Partsâ€perâ€Millionâ€Level, Catalytic [3+2]â€Annulations for the Asymmetric Synthesis of Methanobenzo[7]annulenes. Chemistry - A European Journal, 2021, 27, 18033-18038.	3.3	5
7	Organocatalytic Selective [3 + 2] Cycloadditions: Synthesis of Functionalized 5-Arylthiomethyl-1,2,3-triazoles and 4-Arylthio-1,2,3-triazoles. Journal of Organic Chemistry, 2020, 85, 15488-15501.	3.2	16
8	[3+2]â€Cycloaddition for Fully Decorated Vinylâ€1,2,3â€Triazoles: Design, Synthesis and Applications. Chemistry - an Asian Journal, 2020, 15, 2960-2983.	3.3	18
9	Catalytic Ynone–Amidine Formal [4 + 2]-Cycloaddition for the Regioselective Synthesis of Tricyclic Azepines. Organic Letters, 2020, 22, 9653-9657.	4.6	11
10	Organocatalytic enone-azide [3 + 2]-cycloaddition: synthesis of functionally rich <i>C</i> / <i>N</i> -double vinyl 1,2,3-triazoles. Organic and Biomolecular Chemistry, 2020, 18, 4470-4478.	2.8	22
11	One-Pot Knoevenagel and [4 + 2] Cycloaddition as a Platform for Calliviminones. Organic Letters, 2020, 22, 2897-2901.	4.6	8
12	Organocatalytic Asymmetric Formal [3+3]â€Cycloaddition to Access 2,3â€Diazaspiro[4.5]decaâ€3,6â€dienâ€1â European Journal of Organic Chemistry, 2020, 2020, 6623-6628.	€ones. 2.4	7
13	Reaction engineering and photophysical studies of fully enriched <i>C</i> -vinyl-1,2,3-triazoles. Organic Chemistry Frontiers, 2019, 6, 3620-3628.	4.5	15
14	Organocatalytic Formal Intramolecular [3+2] ycloaddition to Acquire Biologically Important Methanodibenzo[<i>a,f</i>]azulenes and Methanobenzo[<i>f</i>]azulenes. Chemistry - A European Journal, 2019, 25, 14036-14041.	3.3	10
15	Organocatalytic Reductive Propargylation: Scope and Applications. Journal of Organic Chemistry, 2019, 84, 15399-15416.	3.2	16
16	Frontispiece: Stereoselective Insertion of Benzynes into Lawsones: Synthesis of Biologically Important Benzannulated Bicyclo[3.3.0]octanes. Chemistry - A European Journal, 2019, 25, .	3.3	0
17	Stereoselective Insertion of Benzynes into Lawsones: Synthesis of Biologically Important Benzannulated Bicyclo[3.3.0]octanes. Chemistry - A European Journal, 2019, 25, 1177-1183.	3.3	20
18	Spectroscopic evaluation of synthesized 5β-dihydrocortisol and 5β-dihydrocortisol acetate binding mechanism with human serum albumin and their role in anticancer activity. Journal of Biomolecular Structure and Dynamics, 2019, 37, 623-640.	3.5	10

#	Article	IF	CITATIONS
19	Status of Asymmetric Catalysis in India during the Last Ten Years. Proceedings of the Indian National Science Academy, 2019, , .	1.4	0
20	Construction of 2â€Thiabicyclo[3.3.1]nonanes by Organocatalytic Asymmetric Formal [3+3] Cycloaddition. European Journal of Organic Chemistry, 2018, 2018, 1852-1857.	2.4	4
21	Catalytic [3 + 3]-Cycloaddition for Regioselective Preparation of Tricyclic Oxadiazines. Organic Letters, 2018, 20, 6979-6983.	4.6	26
22	An Aldehydeâ€Azomethine Imine [3+2]â€Cycloaddition: Highâ€Yielding Regioselective Synthesis of Substituted N,N â€Bicyclic Pyrazolidinones. ChemistrySelect, 2018, 3, 7900-7905.	1.5	5
23	Modular Access to Chiral 2,3-Dihydrofurans and 3,4-Dihydro-2 <i>H</i> -pyrans by Stereospecific Activation of Formylcyclopropanes through Combination of Organocatalytic Reductive Coupling and Lewis-Acid-Catalyzed Annulative Ring-Opening Reactions. Journal of Organic Chemistry, 2018, 83, 9795-9817	3.2	22
24	Triazabicyclodecene as an Organocatalyst for the Regiospecific Synthesis of 1,4,5â€Trisubstituted <i>N</i> â€Vinylâ€1,2,3â€triazoles. European Journal of Organic Chemistry, 2017, 2017, 459-464.	2.4	31
25	Asymmetric Supramolecular Organocatalysis: A Complementary Upgrade to Organocatalysis. European Journal of Organic Chemistry, 2017, 2017, 5460-5483.	2.4	24
26	Unraveling the Stability of Plasma Proteins upon Interaction of Synthesized Androstenedione and Its Derivatives—A Biophysical and Computational Approach. ACS Omega, 2017, 2, 6514-6524.	3.5	22
27	Organocatalytic Asymmetric Formal [3+2] Cycloaddition as a Versatile Platform to Access Methanobenzo[7]annulenes. Angewandte Chemie - International Edition, 2017, 56, 12930-12934.	13.8	45
28	Organocatalytic Asymmetric Formal [3+2] Cycloaddition as a Versatile Platform to Access Methanobenzo[7]annulenes. Angewandte Chemie, 2017, 129, 13110-13114.	2.0	15
29	Organocatalytic umpolung annulative dimerization of ynones for the synthesis of 5-alkylidene-2-cyclopentenones. Organic and Biomolecular Chemistry, 2017, 15, 9785-9789.	2.8	16
30	Organocatalytic Vinyl Azideâ€Carbonyl [3+2] Cycloaddition: Highâ€Yielding Synthesis of Fully Decorated <i>N</i> â€Vinylâ€1,2,3â€Triazoles. ChemCatChem, 2017, 9, 263-267.	3.7	38
31	Unravelling the binding mechanism and protein stability of human serum albumin while interacting with nefopam analogues: a biophysical and <i>insilico</i> approach. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2280-2292.	3.5	16
32	Asymmetric Synthesis of Natureâ€Inspired Bioactive Spiro Compounds through Organocatalytic Diels–Alder Reactions. Asian Journal of Organic Chemistry, 2016, 5, 729-734.	2.7	17
33	A BrÃ,nsted Acid–Primary Amine as a Synergistic Catalyst for Stereoselective Asymmetric Diels–Alder Reactions. European Journal of Organic Chemistry, 2016, 2016, 5220-5226.	2.4	17
34	Organocatalytic azomethine imine-olefin click reaction: high-yielding stereoselective synthesis of spiroindane-1,3-dione-pyrazolidinones. Organic and Biomolecular Chemistry, 2016, 14, 6517-6522.	2.8	17
35	Stereoselective synthesis of cyclopentanone-fused benzosultams through Tomita zipper cyclization. Organic and Biomolecular Chemistry, 2016, 14, 6413-6416.	2.8	17
36	Rawal's catalyst as an effective stimulant for the highly asymmetric Michael addition of β-keto esters to functionally rich nitro-olefins. Organic and Biomolecular Chemistry, 2016, 14, 5494-5499.	2.8	15

#	Article	IF	CITATIONS
37	A BrÃ,nsted Acid-Amino Acid as a Synergistic Catalyst for Asymmetric List-Lerner-Barbas Aldol Reactions. Journal of Organic Chemistry, 2016, 81, 2405-2419.	3.2	19
38	Direct organocatalytic Wittig/Hetero-Diels-Alder reactions in one-pot: synthesis of highly-substituted tetrahydropyranones. Arkivoc, 2016, 2016, 98-115.	0.5	1
39	An Organocatalytic Regiospecific Synthesis of 1,5â€Disubstituted 4â€Thioâ€1,2,3â€triazoles and 1,5â€Disubstitu 1,2,3â€Triazoles. Chemistry - A European Journal, 2015, 21, 16775-16780.	ited 3.3	60
40	A Modularly Designed Supramolecular Organocatalyst as an Effective Stimulant for the Highly Asymmetric Michael Addition of Ketones to Nitro Olefins. European Journal of Organic Chemistry, 2015, 2015, 6413-6418.	2.4	20
41	Azide–acetonitrile "click―reaction triggered by Cs ₂ CO ₃ : the atom-economic, high-yielding synthesis of 5-amino-1,2,3-triazoles. RSC Advances, 2015, 5, 62062-62066.	3.6	46
42	Organocatalytic diastereoselective synthesis of chiral decalines through the domino Claisen–Schmidt/Henry reaction. Organic and Biomolecular Chemistry, 2015, 13, 5110-5114.	2.8	10
43	High-yielding sequential one-pot synthesis of chiral and achiral α-substituted acrylates via a metal-free reductive coupling reaction. Organic and Biomolecular Chemistry, 2014, 12, 5400-5406.	2.8	10
44	Neighboring <i>ortho</i> â€Hydroxy Group Directed Catalytic Asymmetric Triple Domino Reactions of Acetaldehyde with (<i>E</i>)â€2â€(2â€Nitrovinyl)phenols. European Journal of Organic Chemistry, 2014, 2014, 3076-3081.	2.4	33
45	Asymmetric synthesis of drug-like spiro[chroman-3,3′-indolin]-2′-ones through aminal-catalysis. Organic and Biomolecular Chemistry, 2014, 12, 574-580.	2.8	47
46	High‥ielding Total Synthesis of Sexually Deceptive Chiloglottones and Antimicrobial Dialkylresorcinols through an Organocatalytic Reductive Coupling Reaction. European Journal of Organic Chemistry, 2014, 2014, 7317-7323.	2.4	21
47	An Enolateâ€Mediated Organocatalytic Azide–Ketone [3+2]â€Cycloaddition Reaction: Regioselective Highâ€Yielding Synthesis of Fully Decorated 1,2,3â€Triazoles. Chemistry - A European Journal, 2014, 20, 16877-16881.	3.3	78
48	An Organocatalytic Azide–Aldehyde [3+2] Cycloaddition: Highâ€Yielding Regioselective Synthesis of 1,4â€Disubstituted 1,2,3â€Triazoles. Angewandte Chemie - International Edition, 2014, 53, 10420-10424.	13.8	180
49	Asymmetric synthesis of tetrahydroquinolines through supramolecular organocatalysis. Organic and Biomolecular Chemistry, 2014, 12, 4300-4304.	2.8	23
50	Organocatalytic Triazole Formation, Followed by Oxidative Aromatization: Regioselective Metalâ€Free Synthesis of Benzotriazoles. Chemistry - A European Journal, 2013, 19, 13175-13181.	3.3	125
51	Direct organocatalytic stereoselective transfer hydrogenation of conjugated olefins of steroids. RSC Advances, 2013, 3, 13497.	3.6	18
52	Direct catalytic asymmetric synthesis of highly functionalized (2-ethynylphenyl)alcohols via Barbas–List aldol reaction: scope and synthetic applications. Organic and Biomolecular Chemistry, 2012, 10, 5094.	2.8	14
53	Discovery of 2-aminobuta-1,3-enynes in asymmetric organocascade catalysis: construction of drug-like spirocyclic cyclohexanes having five to six contiguous stereocenters. Chemical Communications, 2012, 48, 2252.	4.1	73
54	Observation of neighboring ortho-hydroxyl group participation in organocatalytic asymmetric sequential Michael-lactonization reactions: synthesis of highly substituted chiral spirodihydrocoumarins. Organic and Biomolecular Chemistry, 2012, 10, 5825.	2.8	47

#	Article	IF	CITATIONS
55	Asymmetric Supramolecular Catalysis: A Bioâ€Inspired Tool for the High Asymmetric Induction in the Enamineâ€Based Michael Reactions. Chemistry - A European Journal, 2012, 18, 8008-8012.	3.3	62
56	Dienamine Catalysis: An Emerging Technology in Organic Synthesis. European Journal of Organic Chemistry, 2012, 2012, 865-887.	2.4	234
57	Design, synthesis and biological evaluation of optically pure functionalized spiro[5,5]undecane-1,5,9-triones as HIV-1 inhibitors. Organic and Biomolecular Chemistry, 2011, 9, 7282.	2.8	29
58	A general approach to high-yielding asymmetric synthesis of chiral 3-alkyl-4-nitromethylchromans via cascade Barbas–Michael and acetalization reactions. Organic and Biomolecular Chemistry, 2011, 9, 2715.	2.8	57
59	Sequential one-pot combination of multi-component and multi-catalysis cascade reactions: an emerging technology in organic synthesis. Organic and Biomolecular Chemistry, 2011, 9, 1277-1300.	2.8	249
60	Sequential Combination of Rutheniumâ€, Baseâ€, and Gold atalysis – A New Approach to the Synthesis of Medicinally Important Heterocycles. European Journal of Organic Chemistry, 2011, 2011, 3514-3522.	2.4	28
61	Direct Organocatalytic Asymmetric Approach to Baylis–Hillmanâ€īype Products Through a Push–Pull Dienamine Platform. European Journal of Organic Chemistry, 2011, 2011, 2599-2605.	2.4	26
62	A General Approach to Chiral Building Blocks via Direct Amino Acid-Catalyzed Cascade Three-Component Reductive Alkylations: Formal Total Synthesis of HIV-1 Protease Inhibitors, Antibiotic Agglomerins, Brefeldin A, and (<i>R</i>)-γ-Hexanolide. Journal of Organic Chemistry, 2010, 75, 74-85.	3.2	67
63	Rapid Synthesis of Functionalized Indenes, Triazoles, and Glucocorticoid Receptor Modulators by Sequential Multicatalysis Cascade Reactions. European Journal of Organic Chemistry, 2010, 2010, 3205-3210.	2.4	19
64	Direct amino acid-catalyzed cascade reductive alkylation of arylacetonitriles: high-yielding synthesis of ibuprofen analogs. Tetrahedron Letters, 2010, 51, 5246-5251.	1.4	12
65	Sequential One-Pot Combination of Multireactions through Multicatalysis: A General Approach to Rapid Assembly of Functionalized Pushâ^Pull Olefins, Phenols, and 2-Methyl-2H-chromenes. ACS Combinatorial Science, 2010, 12, 855-876.	3.3	21
66	Rapid two-step synthesis of drug-like polycyclic substances by sequential multi-catalysis cascade reactions. Organic and Biomolecular Chemistry, 2010, 8, 321-325.	2.8	17
67	Direct catalytic asymmetric synthesis of highly functionalized tetronic acids/tetrahydro-isobenzofuran-1,5-diones via combination of cascade three-component reductive alkylations and Michael-aldol reactions. Organic and Biomolecular Chemistry, 2010, 8, 2859.	2.8	62
68	Sequential combination of Michael and acetalization reactions: direct catalytic asymmetric synthesis of functionalized 4-nitromethyl-chromans as drug intermediates. Organic and Biomolecular Chemistry, 2010, 8, 4259.	2.8	45
69	Direct Catalytic Asymmetric Synthesis of Highly Functionalized 2â€Methylchromanâ€2,4â€diols via Barbas–List Aldol Reaction. Chemistry - A European Journal, 2009, 15, 4516-4522.	3.3	69
70	Multi-catalysis cascade reactions based on the methoxycarbonylketene platform: diversity-oriented synthesis of functionalized non-symmetrical malonates for agrochemicals and pharmaceuticals. Organic and Biomolecular Chemistry, 2009, 7, 2053.	2.8	34
71	High-yielding synthesis of Nefopam analogues (functionalized benzoxazocines) by sequential one-pot cascade operations. Organic and Biomolecular Chemistry, 2009, 7, 3372.	2.8	25
72	Amino Acidâ€Catalyzed Cascade [3+2]â€Cycloaddition/Hydrolysis Reactions Based on the Push–Pull Dienamine Platform: Synthesis of Highly Functionalized <i>N</i> Hâ€1,2,3â€Triazoles. Chemistry - A European Journal, 2008, 14, 9143-9147.	3.3	202

#	Article	IF	CITATIONS
73	Development of Pharmaceutical Drugs, Drug Intermediates and Ingredients by Using Direct Organoâ€Click Reactions. European Journal of Organic Chemistry, 2008, 2008, 975-993.	2.4	98
74	A New Oneâ€Pot Synthetic Approach to the Highly Functionalized (<i>Z</i>)â€2â€(Butaâ€1,3â€dienyl)phenols a 2â€Methylâ€2 <i>H</i> â€chromenes: Use of Amine, Ruthenium and Baseâ€Catalysis. European Journal of Organic Chemistry, 2008, 2008, 3907-3911.	nd : 2.4	44
75	Direct ionic liquid promoted organocatalyzed diazo-transfer reactions: diversity-oriented synthesis of diazo-compounds. Tetrahedron Letters, 2008, 49, 2704-2709.	1.4	28
76	Direct amino acid-catalyzed cascade biomimetic reductive alkylations: application to the asymmetric synthesis of Hajos–Parrish ketone analogues. Organic and Biomolecular Chemistry, 2008, 6, 4176.	2.8	71
77	Combining multi-catalysis and multi-component systems for the development of one-pot asymmetric reactions: stereoselective synthesis of highly functionalized bicyclo[4.4.0]decane-1,6-diones. Organic and Biomolecular Chemistry, 2008, 6, 2488.	2.8	44
78	Double cascade reactions based on the Barbas dienamine platform: highly stereoselective synthesis of functionalized cyclohexanes for cardiovascular agents. Organic and Biomolecular Chemistry, 2008, 6, 719.	2.8	57
79	Multi-catalysis reactions: direct organocatalytic sequential one-pot synthesis of highly functionalized cyclopenta[b]chromen-1-ones. Organic and Biomolecular Chemistry, 2008, 6, 4188.	2.8	45
80	Organocatalytic Cascade Reactions Based on Pushâ^'Pull Dienamine Platform:Â Synthesis of Highly Substituted Anilines. Journal of Organic Chemistry, 2007, 72, 1458-1463.	3.2	78
81	Organocatalytic Sequential One-Pot Double Cascade Asymmetric Synthesis of Wielandâ [~] Miescher Ketone Analogues from a Knoevenagel/Hydrogenation/Robinson Annulation Sequence:  Scope and Applications of Organocatalytic Biomimetic Reductions. Journal of Organic Chemistry, 2007, 72, 5056-5068.	3.2	191
82	A new organocatalyst for Friedel–Crafts alkylation of 2-naphthols with isatins: application of an organo-click strategy for the cascade synthesis of highly functionalized molecules. Tetrahedron Letters, 2007, 48, 7618-7623.	1.4	38
83	Electrostatic repulsion as an additional selectivity factor in asymmetric proline catalysis. Organic and Biomolecular Chemistry, 2006, 4, 2685.	2.8	23
84	Development of drug intermediates by using direct organocatalytic multi-component reactions. Organic and Biomolecular Chemistry, 2006, 4, 1641.	2.8	75
85	A novel and green protocol for two-carbon homologation: a direct amino acid/K2CO3-catalyzed four-component reaction of aldehydes, active methylenes, Hantzsch esters and alkyl halides. Tetrahedron Letters, 2006, 47, 651-656.	1.4	56
86	Direct organocatalytic hydroalkoxylation of α,β-unsaturated ketones. Tetrahedron Letters, 2006, 47, 7689-7693.	1.4	42
87	Towards organo-click reactions: development of pharmaceutical ingredients by using direct organocatalytic bio-mimetic reductions. Organic and Biomolecular Chemistry, 2006, 4, 4463.	2.8	69
88	Direct Organocatalytic in situ Generation of Novel Push—Pull Dienamines: Application in Tandem Claisen—Schmidt/Iso-Aromatization Reactions ChemInform, 2006, 37, no.	0.0	0
89	Direct organocatalytic in situ generation of novel push–pull dienamines: application in tandem Claisen–Schmidt/iso-aromatization reactions. Tetrahedron Letters, 2005, 46, 7037-7042.	1.4	47
90	Direct Amino Acid Catalyzed Asymmetric Desymmetrization of meso-Compounds: Tandem Aminoxylation/O—N Bond Heterolysis Reactions ChemInform, 2005, 36, no.	0.0	0

#	Article	IF	CITATIONS
91	Direct Amino Acid-Catalyzed Asymmetric Desymmetrization ofmeso-Compounds:  Tandem Aminoxylation/Oâ^'N Bond Heterolysis Reactions. Organic Letters, 2005, 7, 1577-1580.	4.6	143
92	Mimicking Dihydroxy Acetone Phosphate-Utilizing Aldolases through Organocatalysis:  A Facile Route to Carbohydrates and Aminosugarsâ€. Organic Letters, 2005, 7, 1383-1385.	4.6	142
93	Towards Organo-Click Chemistry: Development of Organocatalytic Multicomponent Reactions Through Combinations of Aldol, Wittig, Knoevenagel, Michael, Diels-Alder and Huisgen Cycloaddition Reactions. Chemistry - A European Journal, 2004, 10, 5323-5331.	3.3	267