Zicheng Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1669633/publications.pdf

Version: 2024-02-01

218677 197818 2,492 53 26 49 h-index citations g-index papers 57 57 57 2565 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Control of Phase Separation and Crystallization for <scp>Highâ€Efficiency</scp> and <scp>Mechanically Deformable</scp> Organic Solar Cells. Energy and Environmental Materials, 2023, 6, .	12.8	6
2	Lead-free molecular one-dimensional perovskite for efficient X-ray detection. Journal of Energy Chemistry, 2022, 64, 209-213.	12.9	15
3	Blending Donors with Different Molecular Weights: An Efficient Strategy to Resolve the Conflict between Coherence Length and Intermixed Phase in Polymer/Nonfullerene Solar Cells. Small, 2022, 18, e2103804.	10.0	16
4	Formamidinium-based Ruddlesden–Popper perovskite films fabricated <i>via</i> two-step sequential deposition: quantum well formation, physical properties and film-based solar cells. Energy and Environmental Science, 2022, 15, 1144-1155.	30.8	27
5	Polymers for new energy technology. Journal of Polymer Science, 2022, 60, 863-864.	3.8	1
6	Carrier Generation Engineering toward 18% Efficiency Organic Solar Cells by Controlling Film Microstructure. Advanced Energy Materials, 2022, 12, .	19.5	25
7	In Situ Study of Molecular Aggregation in Conjugated Polymer/Elastomer Blends toward Stretchable Electronics. Macromolecules, 2022, 55, 297-308.	4.8	30
8	Research Progress in Organic Solar Cells Based on Small Molecule Donors and Polymer Acceptors. Acta Chimica Sinica, 2021, 79, 545.	1.4	7
9	Microstructure and lattice strain control towards high-performance ambient green-printed perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 13297-13305.	10.3	29
10	Perovskite Solar Cells toward Eco-Friendly Printing. Research, 2021, 2021, 9671892.	5.7	18
11	Dual interfacial engineering for efficient Cs2AgBiBr6 based solar cells. Journal of Energy Chemistry, 2021, 53, 372-378.	12.9	46
12	Optimizing Morphology to Trade Off Charge Transport and Mechanical Properties of Stretchable Conjugated Polymer Films. Macromolecules, 2021, 54, 3907-3926.	4.8	70
13	Organic solar cells based on small molecule donors and polymer acceptors operating at 150 °C. Journal of Materials Chemistry A, 2020, 8, 10983-10988.	10.3	37
14	Designed Polymer Donors to Match an Amorphous Polymer Acceptor in All-Polymer Solar Cells. ACS Applied Electronic Materials, 2020, 2, 2274-2281.	4.3	11
15	Effect of polymer donor aggregation on the active layer morphology of amorphous polymer acceptor-based all-polymer solar cells. Journal of Materials Chemistry C, 2020, 8, 5613-5619.	5 . 5	13
16	Improving Active Layer Morphology of All-Polymer Solar Cells by Solution Temperature. Macromolecules, 2020, 53, 3325-3331.	4.8	43
17	Morphology of small molecular donor/polymer acceptor blends in organic solar cells: effect of the \parallel 6 \parallel 6 \parallel 6 stacking capability of the small molecular donors. Journal of Materials Chemistry C, 2019, 7, 10521-10529.	5. 5	17
18	Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nature Communications, 2019, 10, 3271.	12.8	94

#	Article	lF	CITATIONS
19	Small Molecular Donor/Polymer Acceptor Type Organic Solar Cells: Effect of Molecular Weight on Active Layer Morphology. Macromolecules, 2019, 52, 8682-8689.	4.8	33
20	Amorphous Polymer Acceptor Containing B ↕N Units Matches Various Polymer Donors for All-Polymer Solar Cells. Macromolecules, 2019, 52, 7081-7088.	4.8	42
21	Cesium-functionalized pectin as a cathode interlayer for polymer solar cells. Journal of Materials Chemistry C, 2019, 7, 1592-1596.	5 . 5	10
22	Improving Active Layer Morphology of All-Polymer Solar Cells by Dissolving the Two Polymers Individually. Macromolecules, 2019, 52, 2402-2410.	4.8	49
23	All-polymer indoor photovoltaics with high open-circuit voltage. Journal of Materials Chemistry A, 2019, 7, 26533-26539.	10.3	107
24	Amino <i>N</i> -oxide functionalized graphene quantum dots as a cathode interlayer for inverted polymer solar cells. Journal of Materials Chemistry C, 2018, 6, 5684-5689.	5.5	11
25	Edge-functionalized graphene quantum dots as a thickness-insensitive cathode interlayer for polymer solar cells. Nano Research, 2018, 11, 4293-4301.	10.4	22
26	Manipulating active layer morphology of molecular donor/polymer acceptor based organic solar cells through ternary blends. Science China Chemistry, 2018, 61, 1025-1033.	8.2	25
27	Graphene quantum dot derivatives as anode/cathode interlayers for polymer solar cells. Scientia Sinica Chimica, 2018, 48, 902-913.	0.4	O
28	Organic solar cells based on a polymer acceptor and a small molecule donor with a high open-circuit voltage. Journal of Materials Chemistry C, 2017, 5, 6812-6819.	5.5	24
29	Polymer solar cells with open-circuit voltage of 1.3 V using polymer electron acceptor with high LUMO level. Nano Energy, 2017, 32, 216-224.	16.0	50
30	An organoboron compound with a wide absorption spectrum for solar cell applications. Chemical Communications, 2017, 53, 12213-12216.	4.1	48
31	A double Bâ†N bridged bipyridine (BNBP)-based polymer electron acceptor: all-polymer solar cells with a high donor : acceptor blend ratio. Materials Chemistry Frontiers, 2017, 1, 852-858.	5.9	27
32	Titelbild: Diketopyrrolopyrroleâ€based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices (Angew. Chem. 35/2016). Angewandte Chemie, 2016, 128, 10307-10307.	2.0	0
33	Diketopyrrolopyrroleâ€based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices. Angewandte Chemie - International Edition, 2016, 55, 10376-10380.	13.8	120
34	An Electronâ€Deficient Building Block Based on the Bâ†N Unit: An Electron Acceptor for Allâ€Polymer Solar Cells. Angewandte Chemie, 2016, 128, 1458-1462.	2.0	54
35	Diketopyrrolopyrroleâ€based Conjugated Polymers Bearing Branched Oligo(Ethylene Glycol) Side Chains for Photovoltaic Devices. Angewandte Chemie, 2016, 128, 10532-10536.	2.0	17
36	Low-bandgap polymer electron acceptors based on double B ↕N bridged bipyridine (BNBP) and diketopyrrolopyrrole (DPP) units for all-polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 9961-9967.	5.5	46

#	Article	IF	Citations
37	An Electronâ€Deficient Building Block Based on the Bâ†N Unit: An Electron Acceptor for Allâ€Polymer Solar Cells. Angewandte Chemie - International Edition, 2016, 55, 1436-1440.	13.8	235
38	A polymer acceptor with an optimal LUMO energy level for all-polymer solar cells. Chemical Science, 2016, 7, 6197-6202.	7.4	98
39	Polymer Acceptor Based on Double Bâ†N Bridged Bipyridine (BNBP) Unit for Highâ€Efficiency Allâ€Polymer Solar Cells. Advanced Materials, 2016, 28, 6504-6508.	21.0	298
40	Functionalized graphene quantum dots as a novel cathode interlayer of polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 2413-2418.	10.3	52
41	Innenrýcktitelbild: Developing Conjugated Polymers with High Electron Affinity by Replacing a CïŁ¿C Unit with a Bâ†N Unit (Angew. Chem. 12/2015). Angewandte Chemie, 2015, 127, 3897-3897.	2.0	0
42	Developing Conjugated Polymers with High Electron Affinity by Replacing a CC Unit with a B <i>â†</i> N Unit. Angewandte Chemie - International Edition, 2015, 54, 3648-3652.	13.8	212
43	Few-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells. Nano Energy, 2015, 15, 186-192.	16.0	113
44	Development of a donor polymer using a B ↕N unit for suitable LUMO/HOMO energy levels and improved photovoltaic performance. Polymer Chemistry, 2015, 6, 8029-8035.	3.9	31
45	Supramolecular metallogels with complex of phosphonate substituted carbazole derivative and aluminum(III) ion as gelator. Journal of Colloid and Interface Science, 2014, 425, 102-109.	9.4	5
46	Effects of molecular structures and solvent properties on the self-assembly of carbazole-based conjugated dendrimers by solvent vapor annealing. RSC Advances, 2013, 3, 8037.	3.6	7
47	Supramolecular assemblies from carbazole dendrimers modulated by core size and molecular configuration. Soft Matter, 2013, 9, 10404.	2.7	11
48	Detection of explosives with porous xerogel film from conjugated carbazole-based dendrimers. Journal of Materials Chemistry C, 2013, 1, 786-792.	5.5	51
49	Thickness Uniformity Adjustment of Inkjet Printed Lightâ€emitting Polymer Films by Solvent Mixture. Chinese Journal of Chemistry, 2013, 31, 1449-1454.	4.9	14
50	Polymer assisted solution-processing of rubrene spherulites via solvent vapor annealing. RSC Advances, 2012, 2, 5779.	3.6	16
51	Self-Assembly of Carbazole-Based Dendrimers by Solvent Vapor Annealing: From Fibers to Spherulites. Journal of Physical Chemistry B, 2011, 115, 15159-15166.	2.6	12
52	Patterning of pinhole free small molecular organic light-emitting films by ink-jet printing. Organic Electronics, 2011, 12, 703-709.	2.6	63
53	Crystallizationâ€Induced Phase Segregation Based on Doubleâ€Crystalline Blends of Poly(3â€hexylthiophene) and Poly(ethylene glycol)s. Macromolecular Rapid Communications, 2010, 31, 532-538.	3.9	38