Seijiro Matsubara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1669499/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Asymmetric Catalytic Cycloetherification Mediated by Bifunctional Organocatalysts. Journal of the American Chemical Society, 2011, 133, 16711-16713.	6.6	147
2	Bifunctional Organocatalysts for the Enantioselective Synthesis of Axially Chiral Isoquinoline <i>N</i> -Oxides. Journal of the American Chemical Society, 2015, 137, 6766-6769.	6.6	122
3	Facile Net Cycloaddition Approach to Optically Active 1,5-Benzothiazepines. Journal of the American Chemical Society, 2015, 137, 5320-5323.	6.6	117
4	Palladium-Catalyzed Decarboxylation and Decarbonylation under Hydrothermal Conditions: Decarboxylative Deuteration. Organic Letters, 2004, 6, 2071-2073.	2.4	113
5	Triethylborane-Induced Bromine Atom-Transfer Radical Addition in Aqueous Media:Â Study of the Solvent Effect on Radical Addition Reactions. Journal of Organic Chemistry, 2001, 66, 7776-7785.	1.7	110
6	Palladium-Catalyzed Cross-Coupling Reaction of Organoindiums with Aryl Halides in Aqueous Media. Organic Letters, 2001, 3, 1997-1999.	2.4	102
7	Asymmetric Indoline Synthesis via Intramolecular Aza-Michael Addition Mediated by Bifunctional Organocatalysts. Organic Letters, 2013, 15, 3658-3661.	2.4	88
8	Procedure-Controlled Enantioselectivity Switch in Organocatalytic 2-Oxazolidinone Synthesis. Journal of the American Chemical Society, 2013, 135, 12160-12163.	6.6	84
9	Cationic Iron(III) Porphyrin-Catalyzed [4 + 2] Cycloaddition of Unactivated Aldehydes with Simple Dienes. Journal of the American Chemical Society, 2012, 134, 5512-5515.	6.6	83
10	Asymmetric Synthesis of 1,3-Dioxolanes by Organocatalytic Formal [3 + 2] Cycloaddition via Hemiacetal Intermediates. Organic Letters, 2012, 14, 1620-1623.	2.4	82
11	Triethylborane-Induced Radical Reactions with Gallium Hydride Reagent HGaCl2. Organic Letters, 2001, 3, 1853-1855.	2.4	68
12	Organocatalytic asymmetric oxy-Michael addition to a γ-hydroxy-α,β-unsaturated thioester via hemiacetal intermediates. Chemical Communications, 2012, 48, 5076.	2.2	65
13	Asymmetric chroman synthesis via an intramolecular oxy-Michael addition by bifunctional organocatalysts. Organic and Biomolecular Chemistry, 2014, 12, 119-122.	1.5	63
14	Nickel-Catalyzed Reactions Directed toward the Formation of Heterocycles. Accounts of Chemical Research, 2015, 48, 1703-1716.	7.6	59
15	Asymmetric Synthesis of Spiroketals with Aminothiourea Catalysts. Angewandte Chemie - International Edition, 2015, 54, 15497-15500.	7.2	58
16	Remarkable Rate Acceleration of Pd(0)-Catalyzed Hydrogermylation of Alkynes and Dienes in Water. Organic Letters, 2001, 3, 2521-2524.	2.4	48
17	Induction of Axial Chirality in 8â€Arylquinolines through Halogenation Reactions Using Bifunctional Organocatalysts. Chemistry - A European Journal, 2017, 23, 9996-10000.	1.7	45
18	Asymmetric Synthesis of 1,3-Oxazolidines via Intramolecular Aza-Michael Addition by Bifunctional Organocatalysts. Chemistry Letters, 2013, 42, 355-357.	0.7	44

SEIJIRO MATSUBARA

#	Article	IF	CITATIONS
19	Asymmetric Oxy-Michael Addition to γ-Hydroxy-α,β-Unsaturated Carbonyls Using Formaldehyde as an Oxygen-Centered Nucleophile. Organic Letters, 2014, 16, 6264-6266.	2.4	42
20	Nickel-catalyzed intermolecular carboiodination of alkynes with aryl iodides. Chemical Communications, 2018, 54, 12750-12753.	2.2	38
21	Asymmetric Isomerization of ω-Hydroxy-α,β-Unsaturated Thioesters into β-Mercaptolactones by a Bifunctional Aminothiourea Catalyst. Organic Letters, 2014, 16, 2184-2187.	2.4	37
22	Cobalt(III) Porphyrin Catalyzed Aza-Diels–Alder Reaction. Organic Letters, 2012, 14, 4794-4797.	2.4	36
23	Asymmetric Cycloetherifications by Bifunctional Aminothiourea Catalysts: The Importance of Hydrogen Bonding. Synthesis, 2013, 45, 1627-1634.	1.2	36
24	"Naked―Lithium Cation: Strongly Activated Metal Cations Facilitated by Carborane Anions. Journal of Organic Chemistry, 2017, 82, 1931-1935.	1.7	34
25	Organocatalytic enantio- and diastereoselective cycloetherification via dynamic kinetic resolution of chiral cyanohydrins. Nature Communications, 2017, 8, 1397.	5.8	33
26	Stereoselective Pinacol-Type Rearrangement of 2,3-Epoxy Alcohols with Retention of Configuration Mediated by Bis(iodozincio)methane. Angewandte Chemie - International Edition, 2002, 41, 2837-2840.	7.2	32
27	Nickel-catalyzed Cycloaddition of α,β-Unsaturated Oximes with Alkynes: Synthesis of Highly Substituted Pyridine Derivatives. Chemistry Letters, 2012, 41, 1498-1499.	0.7	30
28	<i>trans</i> yclooctenes as Halolactonization Catalysts. Angewandte Chemie - International Edition, 2018, 57, 13863-13867.	7.2	29
29	Manganese Porphyrin Catalyzed Cycloisomerization of Enynes. Organic Letters, 2012, 14, 3008-3011.	2.4	28
30	A chiral phosphoric acid catalyst for asymmetric construction of 1,3-dioxanes. Chemical Communications, 2015, 51, 11693-11696.	2.2	28
31	Asymmetric Net Cycloaddition for Access to Diverse Substituted 1,5-Benzothiazepines. Journal of Organic Chemistry, 2017, 82, 12655-12668.	1.7	28
32	Nickel-Catalyzed [5+2] Cycloaddition of 10Ï€-Electron Aromatic Benzothiophenes with Alkynes To Form Thermally Metastable 12I€-Electron Nonaromatic Benzothiepines. Journal of the American Chemical Society, 2019, 141, 12541-12544.	6.6	26
33	Theoretical Mechanistic Study of Novel Ni(0)-Catalyzed [6 – 2 + 2] Cycloaddition Reactions of Isatoic Anhydrides with Alkynes: Origin of Facile Decarboxylation. Organometallics, 2013, 32, 7564-7574.	1.1	24
34	Iron Corrole-catalyzed [4 + 2] Cycloaddition of Dienes and Aldehydes. Chemistry Letters, 2013, 42, 1241-1243.	0.7	24
35	FeCl ₃ as an Ion-Pairing Lewis Acid Catalyst. Formation of Highly Lewis Acidic FeCl ₂ ⁺ and Thermodynamically Stable FeCl ₄ [–] To Catalyze the Aza-Diels–Alder Reaction with High Turnover Frequency. Organic Letters, 2018, 20, 7474-7477	2.4	24
36	Diastereoselective Synthesis of 1,3-Oxazolidines via Cationic Iron Porphyrin-catalyzed Cycloaddition of Aziridines with Aldehydes. Organic Letters, 2019, 21, 2593-2596.	2.4	23

SEIJIRO MATSUBARA

#	Article	IF	CITATIONS
37	Transition-Metal-Catalyzed Sequential Cross-Coupling of Bis(iodozincio)methane and -ethane with Two Different Organic Halides. Chemistry - A European Journal, 2006, 12, 721-726.	1.7	22
38	Nickel-Catalyzed Intermolecular Carbobromination of Alkynes. ACS Catalysis, 2020, 10, 3773-3777.	5.5	22
39	Ruthenium-Porphyrin-Catalyzed [4 + 2] Cycloaddition of α,β-Unsaturated Imines and Aldehydes. Organic Letters, 2015, 17, 5284-5287.	2.4	19
40	Asymmetric Cycloetherification of in Situ Generated Cyanohydrins through the Concomitant Construction of Three Chiral Carbon Centers. Organic Letters, 2019, 21, 2156-2160.	2.4	19
41	Organocatalytic Enantio- and Diastereoselective Construction of <i>syn</i> -1,3-Diol Motifs via Dynamic Kinetic Resolution of In Situ Generated Chiral Cyanohydrins. Organic Letters, 2019, 21, 2688-2692.	2.4	19
42	Catalytic Approaches to Optically Active 1,5-Benzothiazepines. ACS Catalysis, 2018, 8, 6273-6282.	5.5	18
43	A Protocol for an Iodine–Metal Exchange Reaction on Cubane Using Lithium Organozincates. Organic Letters, 2019, 21, 473-475.	2.4	18
44	Desymmetrization of <i>gem</i> -diols <i>via</i> water-assisted organocatalytic enantio- and diastereoselective cycloetherification. Chemical Communications, 2020, 56, 12335-12338.	2.2	18
45	Enantio- and Diastereoselective Construction of Contiguous Tetrasubstituted Chiral Carbons in Organocatalytic Oxadecalin Synthesis. Organic Letters, 2020, 22, 4710-4715.	2.4	17
46	Bis(iodozincio)methane as a synthetic tool Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2003, 79B, 71-77.	1.6	16
47	[3+2] Cycloaddition of Aziridines and Alkenes Catalyzed by a Cationic Manganese Porphyrin. Synlett, 2013, 24, 2763-2767.	1.0	16
48	Asymmetric Cycloetherification via the Kinetic Resolution of Alcohols Using Chiral Phosphoric Acid Catalysts. Chemistry Letters, 2016, 45, 1300-1303.	0.7	16
49	Nickel-catalyzed Decarbonylative and Decarboxylative Cycloaddition of Isatoic Anhydrides with Alkynes. Chemistry Letters, 2013, 42, 1238-1240.	0.7	15
50	Cubane Chirality via Substitution of a "Hidden―Regular Tetrahedron. Organic Letters, 2020, 22, 4083-4087.	2.4	15
51	Stereocontrolled addition of enolates to chiral 2-acyl-1,3-oxathiane derivatives. Chirality, 2003, 15, 38-40.	1.3	13
52	Regio- and Diastereoselective Nickel-Catalyzed Cycloaddition of Activated Cyclopropanes with Allenes. Synlett, 2014, 25, 2281-2284.	1.0	13
53	Kinetic Resolution of Acylsilane Cyanohydrins via Organocatalytic Cycloetherification. Chemistry - an Asian Journal, 2019, 14, 116-120.	1.7	13
54	Catalytic Asymmetric Synthesis of 2,6â€Disubstituted Cuneanes through Enantioselective Constitutional Isomerization of 1,4â€Disubstituted Cubanes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	13

Seijiro Matsubara

#	Article	IF	CITATIONS
55	Cationic Iron(III) Porphyrin Catalyzed Dehydrative Friedel-Crafts Reaction of Alcohols with Arenes. Synlett, 2013, 24, 2148-2152.	1.0	12
56	Lithium(1+)-Catalyzed Nazarov-Type Cyclization of 1-Arylbuta-2,3-dien-1-ols: Synthesis of Benzofulvene Derivatives. Synlett, 2014, 25, 2067-2071.	1.0	12
57	Enantioselective bromination of axially chiral cyanoarenes in the presence of bifunctional organocatalysts. RSC Advances, 2019, 9, 31654-31658.	1.7	12
58	Digitization of Organic Synthesis — How Synthetic Organic Chemists Use Al Technology —. Chemistry Letters, 2021, 50, 475-481.	0.7	12
59	Ytterbium tricyanide: Preparation and catalytic activity for the addition of cyanotrimethylsilane to carbonyl compounds. Applied Organometallic Chemistry, 1995, 9, 413-419.	1.7	11
60	Chlorotrifluoromethylation of Terminal Olefins by Atom Transferâ€Type Radical Reaction Catalyzed by Cobalt Complexes. European Journal of Organic Chemistry, 2019, 2019, 4613-4616.	1.2	11
61	Rapid Preparation of Cycloheptane Ring from 1,2-Diketone and Bis(iodozincio)methane via Oxy-Cope Rearrangement Using Microflow System. Chemistry Letters, 2012, 41, 628-629.	0.7	10
62	Cobalt Porphyrin Catalyzed [3+2] Cycloaddition of Cyclopropanes and Carbonyl Compounds. Synlett, 2014, 25, 2005-2008.	1.0	10
63	Asymmetric Azaâ€Diels–Alder Reaction with Ionâ€Paired—Iron Lewis Acid—Brønsted Acid Catalyst. Chemistry - A European Journal, 2019, 25, 8987-8991.	1.7	10
64	Fullerene and Sulfur Compounds. Materials Transactions, 2002, 43, 1530-1532.	0.4	9
65	Design of Molecular Transformations Based on the Concerted Function of Two Zinc Atoms in Bis(iodozincio)methane. Synlett, 2014, 25, 2831-2841.	1.0	9
66	Diastereoselective Reduction of \hat{l}^2 -(1,3-Dioxan-4-yl)ketones. Synlett, 2015, 26, 1872-1874.	1.0	9
67	Preparation of Organozinc Reagents via Catalyst Controlled Three-Component Coupling between Alkyne, Iodoarene, and Bis(iodozincio)methane. Organic Letters, 2017, 19, 3335-3337.	2.4	9
68	Cationic Cobalt Porphyrin-Catalyzed Allylation of Aldehydes with Allyltrimethylsilanes. Organic Letters, 2019, 21, 3834-3837.	2.4	9
69	Unmasking Inherent Chirality within the Cubane Skeleton. Israel Journal of Chemistry, 2021, 61, 380-386.	1.0	9
70	Preparation of the Zinc Enolate Equivalent of Amides by Zinciomethylation of Isocyanates: Catalytic Asymmetric Reformatsky-Type Reaction. Synthesis, 2014, 46, 2272-2282.	1.2	8
71	A Triphenylamine with Two Phenoxy Radicals Having Unusual Bonding Patterns and a Closedâ \in Shell Electronic State. Angewandte Chemie - International Edition, 2015, 54, 8267-8270.	7.2	8
72	Bifunctional organocatalysts for the asymmetric synthesis of axially chiral benzamides. Beilstein Journal of Organic Chemistry, 2017, 13, 1518-1523.	1.3	8

Seijiro Matsubara

#	Article	IF	CITATIONS
73	Olefination of Carbonyl Compounds by Zinc and Chromium Reagents. , 0, , 200-222.		7
74	Preparation of an Arenylmethylzinc Reagent with Functional Groups by Chemoselective Cross-Coupling Reaction of Bis(iodoÂzincio)methane with Iodoarenes. Synlett, 2015, 26, 2395-2398.	1.0	7
75	Asymmetric Cycloetherification by Bifunctional Organocatalyst. Synthesis, 2018, 50, 4243-4253.	1.2	7
76	Asymmetric syn â€1,3â€Dioxane Construction via Kinetic Resolution of Secondary Alcohols Using Chiral Phosphoric Acid Catalysts. Asian Journal of Organic Chemistry, 2019, 8, 814-818.	1.3	7
77	Samarium Diiodide-Mediated Reaction of Organic Halides with Carbonyl Compounds Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1998, 56, 908-918.	0.0	7
78	Smâ€vermittelte, hochstereoselektive Reaktionen von 1,1â€Dihalogenalkanen mit Aldehyden – Herstellung eines chiralen α″odethyl‣ynthesebausteins aus 1,1â€Diiodetha. Angewandte Chemie, 1997, 109, 631-633.	1.6	6
79	Rhodium(III) Porphyrin-catalyzed Reactions via Activation of Alkynes. Chemistry Letters, 2014, 43, 1937-1939.	0.7	6
80	Copperâ€Catalyzed Direct and Stereoselective Synthesis of Conjugated Enynes from αâ€Allenols. Advanced Synthesis and Catalysis, 2019, 361, 39-43.	2.1	6
81	1,1-Bismetallated Species. , 0, , 641-683.		5
82	Molecular Transformations Using Bis(iodozincio)methane–The Role of Chelation in Main Group Organometallic Chemistry. Bulletin of the Chemical Society of Japan, 2018, 91, 82-86.	2.0	5
83	Ligand-controlled Behavior of Ag(I)–π Complex as σ-Lewis Acid. Chemistry Letters, 2018, 47, 532-535.	0.7	5
84	trans yclooctenes as Halolactonization Catalysts. Angewandte Chemie, 2018, 130, 14059-14063.	1.6	5
85	Copper-catalyzed 1,4-Addition Reaction of Grignard Reagent to Enones Using Microflow System. Chemistry Letters, 2013, 42, 471-472.	0.7	4
86	Catalytic asymmetric cycloetherification via intramolecular oxy-Michael addition of enols. Tetrahedron, 2021, 97, 132381.	1.0	4
87	Nickel-catalyzed Decarbonylative Polymerization of 5-Alkynylphthalimides: A New Methodology for the Preparation of Polyheterocycles. Chemistry Letters, 2012, 41, 1566-1568.	0.7	3
88	<i>trans</i> â€Cyclooctenes as Chiral Ligands in Rhodium atalyzed Asymmetric 1,4â€Additions. European Journal of Organic Chemistry, 2020, 2020, 7131-7133.	1.2	3
89	Multiple Activation Catalyst for Asymmetric [4+2] Cycloaddition of Aldehydes with Dienes. Synlett, 2021, 32, 1943-1947.	1.0	3
90	Catalytic Aerobic Oxidation of Alkenes with Ferric Boroperoxo Porphyrin Complex; Reduction of Oxygen by Iron Porphyrin. Bulletin of the Chemical Society of Japan, 2021, 94, 2493-2497.	2.0	3

SEIJIRO MATSUBARA

#	Article	IF	CITATIONS
91	Non-enzymatic catalytic asymmetric cyanation of acylsilanes. Communications Chemistry, 2022, 5, .	2.0	3
92	Transition of Methylenation Reaction-The Outcome of "Ingredients of Couldron". Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2007, 65, 194-203.	0.0	2
93	Organozinc Reagents in a Flow-microreactor —From Methylenation to Asymmetric Autocatalysis—. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 435-441.	0.0	2
94	A New Synthetic Route to (Trifluoromethyl)quinolines: Nickel-Catalyzed Insertion of an Alkyne into an Aromatic C–S Bond by Formation of a Thianickelacycle and Thermal Desulfidation. Synlett, 2021, 32, 1948-1952.	1.0	2
95	Rubidium and Cesium in Organic Synthesis. , 2005, , 35-50.		1
96	Ingredients of the Soup in the Chemist's Cauldron: Structural Analysis of Organometallics in the Solution by X-ray Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2002, 60, 383-388.	0.0	1
97	Aerobic Direct Dioxygenation of Terminal/Internal Alkynes to αâ€Hydroxyketones by an Fe Porphyrin Catalyst. Chemistry - an Asian Journal, 2021, 16, 3615-3618.	1.7	0
98	Preparation of 2-Aryl-3-silyl- and 2-Aryl-3-germyl-1,3-butadienes via Arylnickelation and Zinciomethylation. Heterocycles, 2021, 103, 769.	0.4	0
99	Ni-Catalyzed Dearomative Cycloaddition of Alkynes to 10Ï€ Aromatic Benzothiophenes: Elucidation of Reaction Mechanism. Bulletin of the Chemical Society of Japan, 2021, 94, 2727-2738.	2.0	0
100	FeBr ₃ -catalyzed Fully Intermolecular [2+2+2] Cycloaddition of Alkenes. Chemistry Letters, 2021, 50, 2018-2021.	0.7	0