Guomin Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1668404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effective and Stable Zeolite Imidazole Framework-Supported Copper Nanoparticles (Cu/ZIF-8) for Glycerol to Lactic Acid. Catalysis Letters, 2022, 152, 172-186.	1.4	15
2	Production of Biofuel Additives from Glycerol Etherification Using Zirconia Supported Phosphotungstic Acid. Catalysis Letters, 2022, 152, 2293-2301.	1.4	3
3	The Synergistic Effect of Hydroxylated Carbon Nanotubes and Ultrasound Treatment on Hierarchical HZSM-5 in the Selective Catalytic Upgrading of Biomass Derived Glycerol to Aromatics. Catalysis Letters, 2022, 152, 2421-2433.	1.4	3
4	Efficient conversion of xylan and rice husk to furfural over immobilized imidazolium acidic ionic liquids. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135, 795-810.	0.8	7
5	Enhancement in the active site exposure in a porphyrin-based PIL/graphene composite catalyst for the highly efficient conversion of CO ₂ . Dalton Transactions, 2022, 51, 3331-3340.	1.6	12
6	Synthesis of aluminum alkylphosphinates under atmospheric pressure. Journal of Chemical Research, 2022, 46, 174751982110732.	0.6	0
7	Monodisperse perovskite CoSn(OH)6 in-situ grown on NiCo hydroxide nanoflowers with strong interfacial bonds to boost broadband visible-light-driven photocatalytic CO2 reduction. Journal of Colloid and Interface Science, 2022, 619, 407-418.	5.0	10
8	Efficient conversion of glycerol to aromatics over stable nanosized x-ZF/ZM-y catalysts using ZIF-8 as a template. Applied Catalysis A: General, 2022, 643, 118761.	2.2	4
9	An Effective and Inexpensive Hf/ZSM-5 Catalyst for Efficient HMF Formation from Cellulose. Catalysis Letters, 2021, 151, 1984-1992.	1.4	10
10	Imidazolium ionic liquid functionalized UiO-66-NH2 as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates. Microporous and Mesoporous Materials, 2021, 310, 110578.	2.2	61
11	Pervaporation separation of levulinic acid aqueous solution by <scp>ZSM</scp> â€5/ <scp>PDMS</scp> composite membrane. Journal of Applied Polymer Science, 2021, 138, .	1.3	6
12	Recent Advances of Pervaporation Separation in DMF/H2O Solutions: A Review. Membranes, 2021, 11, 455.	1.4	13
13	Chitosanâ€Modified Polyvinyl Alcohol Membrane High Performance in Biodiesel/Methanol Pervaporation Separation. ChemistrySelect, 2021, 6, 9052-9059.	0.7	3
14	Experimental and computational studies of Zn (II) complexes structured with Schiff base ligands as the efficient catalysts for chemical fixation of CO2 into cyclic carbonates. Molecular Catalysis, 2021, 515, 111894.	1.0	4
15	Direct conversion of cellulose to levulinic acid using SO3H-functionalized ionic liquids containing halogen-anions. Journal of Molecular Liquids, 2021, 339, 117278.	2.3	13
16	Synthesis of Brominated Alkanes via Heterogeneous Catalytic Distillation over Al2O3/SO42â^'/ZrO2. Catalysts, 2021, 11, 1464.	1.6	2
17	An Effective and Stable HfP/SiO2 Catalyst for the Production of Furfural from Xylan. Catalysis Letters, 2020, 150, 1121-1127.	1.4	6
18	Chemical fixation of CO ₂ into cyclic carbonates catalyzed by bimetal mixed MOFs: the role of the interaction between Co and Zn. Dalton Transactions, 2020, 49, 312-321.	1.6	52

#	Article	IF	CITATIONS
19	Fluorinated biselenophene-naphthalenediimide copolymers for efficient all-polymer solar cells. Dyes and Pigments, 2020, 183, 108721.	2.0	2
20	Insights into mathematical characteristics of developed adsorption model using a sigmoid model. Journal of Molecular Liquids, 2020, 317, 113902.	2.3	2
21	Pyridyl Ionic Liquid Functionalized ZIF-90 for Catalytic Conversion of CO2 into Cyclic Carbonates. Catalysis Letters, 2020, 150, 3561-3571.	1.4	35
22	Ultranarrow Bandgap Naphthalenediimideâ€Ðialkylbifuranâ€Based Copolymers with Highâ€Performance Organic Thinâ€Film Transistors and Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2020, 41, 2000144.	2.0	11
23	Tuning the Catalytic Activity of UiOâ€66 via Modulated Synthesis: Esterification of Levulinic Acid as a Test Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 833-840.	1.0	12
24	Narrow bandgap difluorobenzochalcogenadiazole-based polymers for high-performance organic thin-film transistors and polymer solar cells. New Journal of Chemistry, 2020, 44, 8032-8043.	1.4	6
25	Blooming-forming cyanobacteria pyrolysis over Ni-Al layered double oxides/MCM-41 for nitriles under nitrogen and methanol atmosphere. Biomass Conversion and Biorefinery, 2020, 10, 1063-1070.	2.9	4
26	Catalytic Conversion of Xylose and Xylan into Furfural Over Cr ³⁺ /P-SBA-15 Catalyst Derived from Spent Adsorbent. Industrial & Engineering Chemistry Research, 2019, 58, 13013-13020.	1.8	25
27	[(CH3)2NH2][M(COOH)3] (M=Mn, Co, Ni, Zn) MOFs as highly efficient catalysts for chemical fixation of CO2 and DFT studies. Molecular Catalysis, 2019, 475, 110485.	1.0	10
28	Effects of Additives and Metals on Crystallization of Nano-Sized HZSM-5 Zeolite for Glycerol Aromatization. Catalysts, 2019, 9, 899.	1.6	3
29	A highly active and stable Zn@C/HZSM-5 catalyst using Zn@C derived from ZIF-8 as a template for conversion of glycerol to aromatics. Catalysis Science and Technology, 2019, 9, 739-752.	2.1	23
30	2-Methylimidazole Modified Co-BTC MOF as an Efficient Catalyst for Chemical Fixation of Carbon Dioxide. Catalysis Letters, 2019, 149, 2575-2585.	1.4	43
31	Direct Conversion of Wheat Straw Components into Furan Compounds Using a Highly Efficient and Reusable SnCl ₂ -PTA/β Zeolite Catalyst. Industrial & Engineering Chemistry Research, 2019, 58, 9276-9285.	1.8	29
32	Nitrogenous compounds produced by catalytic pyrolysis of cyanobacteria over metal loaded MCM-41 with vaporized methanol. New Journal of Chemistry, 2019, 43, 6569-6576.	1.4	5
33	Mn-based MOFs as efficient catalysts for catalytic conversion of carbon dioxide into cyclic carbonates and DFT studies. Chemical Engineering Science, 2019, 201, 288-297.	1.9	38
34	Efficient and Selective Ni/Al2O3–C Catalyst Derived from Metal–Organic Frameworks for the Hydrogenation of Furfural to Furfuryl Alcohol. Catalysis Letters, 2019, 149, 2158-2168.	1.4	25
35	Highly efficient Cr/l² zeolite catalyst for conversion of carbohydrates into 5‑hydroxymethylfurfural: Characterization and performance. Fuel Processing Technology, 2019, 190, 38-46.	3.7	45
36	Preparation of nano-sized HZSM-5 zeolite with sodium alginate for glycerol aromatization. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 449-467.	0.8	14

#	Article	IF	CITATIONS
37	Enhanced HMF yield from glucose with H-ZSM-5 catalyst in water-tetrahydrofuran/2-butanol/2-methyltetrahydrofuran biphasic systems. Journal of Central South University, 2019, 26, 2974-2986.	1.2	6
38	Efficient conversion of glucose into 5-hydroxymethylfurfural using a bifunctional Fe ³⁺ modified Amberlyst-15 catalyst. Sustainable Energy and Fuels, 2019, 3, 390-395.	2.5	31
39	Synthesis of glycerol carbonate over porous La-Zr based catalysts: The role of strong and super basic sites. Journal of Alloys and Compounds, 2018, 750, 828-837.	2.8	38
40	Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems. Fuel Processing Technology, 2018, 175, 90-96.	3.7	75
41	Hydrodeoxygenation of Octanoic Acid over the Mo–Doped CeO ₂ â€Supported Bimetal Catalysts: The Role of Mo. ChemistrySelect, 2018, 3, 4786-4796.	0.7	8
42	Synthesis of glycerol carbonate from glycerol and diethyl carbonate over CeO 2 -CdO catalyst: The role of Ce 4+ doped into CdO lattice. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87, 131-139.	2.7	38
43	Melem based multifunctional catalyst for chemical fixation of carbon dioxide into cyclic carbonate. Journal of CO2 Utilization, 2018, 24, 287-297.	3.3	35
44	Efficient and selective conversion of methanol to para-xylene over stable H[Zn,Al]ZSM-5/SiO2 composite catalyst. Applied Catalysis A: General, 2018, 557, 15-24.	2.2	52
45	Synergy effect between hierarchical structured and Sn-modified H[Sn, Al]ZSM-5 zeolites on the catalysts for glycerol aromatization. Microporous and Mesoporous Materials, 2018, 257, 154-161.	2.2	36
46	3D-monoclinic M–BTC MOF (M = Mn, Co, Ni) as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates. Journal of Industrial and Engineering Chemistry, 2018, 58, 296-303.	2.9	113
47	Short channeled Ni-Co/SBA-15 catalysts for highly selective hydrogenation of biomass-derived furfural to tetrahydrofurfuryl alcohol. Microporous and Mesoporous Materials, 2018, 262, 154-165.	2.2	49
48	Selective Hydrogenolysis of Glycerol over Acid-Modified Co–Al Catalysts in a Fixed-Bed Flow Reactor. ACS Sustainable Chemistry and Engineering, 2018, 6, 110-118.	3.2	22
49	Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurfural using an efficient and inexpensive manganese phosphate catalyst. Fuel Processing Technology, 2018, 181, 199-206.	3.7	46
50	Cyanobacteria pyrolysis with methanol catalyzed by Mg-Al hydrotalcite-derived oxides/ZSM-5. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 1273-1278.	1.2	6
51	Functionalized DVB-based polymer catalysts for glycerol and CO2 catalytic conversion. Journal of CO2 Utilization, 2018, 28, 326-334.	3.3	32
52	Zn2(C9H3O6)(C4H5N2)(C4H6N2)3 MOF as a highly efficient catalyst for chemical fixation of CO2 into cyclic carbonates and kinetic studies. Chemical Engineering Research and Design, 2018, 140, 273-282.	2.7	42
53	Dual-linker metal-organic frameworks as efficient carbon dioxide conversion catalysts. Applied Catalysis A: General, 2018, 566, 44-51.	2.2	21
54	Thermodynamic and kinetic studies for synthesis of glycerol carbonate from glycerol and diethyl carbonate over Ce–NiO catalyst. Chemical Papers, 2018, 72, 2909-2919.	1.0	11

#	Article	IF	CITATIONS
55	Microwave-assisted synthesis of 1,4-bis(difluoromethyl)benzene. Chemical Papers, 2017, 71, 1249-1254.	1.0	2
56	Supported <scp>Cu</scp> catalysts for the hydrogenation of furfural in aqueous phase: effect of support. Asia-Pacific Journal of Chemical Engineering, 2017, 12, 422-431.	0.8	15
57	Sn and Zn modified HZSM-5 for one-step catalytic upgrading of glycerol to value-added aromatics: Synergistic combination of impregnated Sn particles, ALD introduced ZnO film and HZSM-5 zeolite. Applied Catalysis A: General, 2017, 539, 80-89.	2.2	20
58	Carbon nitride as efficient catalyst for chemical fixation of CO2 into chloropropene carbonate: Promotion effect of Cl in epichlorohydrin. Molecular Catalysis, 2017, 436, 228-236.	1.0	37
59	The effect of hierarchical pore architecture on one-step catalytic aromatization of glycerol: Reaction routes and catalytic performances. Molecular Catalysis, 2017, 432, 144-154.	1.0	28
60	Synthesis of glycerol carbonate from glycerol and diethyl carbonate over Ce-NiO catalyst: The role of multiphase Ni. Journal of Alloys and Compounds, 2017, 720, 360-368.	2.8	48
61	Hydrogenolysis of glycerol to propanediols over heteropolyacids promoted AgCu/Al2O3 catalysts. Chemical Papers, 2017, 71, 1645-1655.	1.0	Ο
62	Hydrogenolysis of glycerol to propanediols over supported Ag–Cu catalysts. Chemical Papers, 2017, 71, 763-773.	1.0	6
63	Catalytic pyrolysis of natural algae over Mg-Al layered double oxides/ZSM-5 (MgAl-LDO/ZSM-5) for producing bio-oil with low nitrogen content. Bioresource Technology, 2017, 225, 293-298.	4.8	83
64	High-efficiency and low-cost Li/ZnO catalysts for synthesis of glycerol carbonate from glycerol transesterification: The role of Li and ZnO interaction. Applied Catalysis A: General, 2017, 532, 77-85.	2.2	91
65	Hierarchical glucose-based carbons prepared by soft templating and sol–gel process for CO2 capture. Journal of Porous Materials, 2017, 24, 1637-1645.	1.3	8
66	Selective hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol over Ni/γ-Al2O3 catalysts. Research on Chemical Intermediates, 2017, 43, 1179-1195.	1.3	26
67	An experimental and theoretical study of glycerol oxidation to 1,3â€dihydroxyacetone over bimetallic Ptâ€Bi catalysts. AICHE Journal, 2017, 63, 705-715.	1.8	60
68	A new protocol for the synthesis of 4,7,12,15-tetrachloro[2.2]paracyclophane. Beilstein Journal of Organic Chemistry, 2016, 12, 2443-2449.	1.3	5
69	CuNi@C catalysts with high activity derived from metal–organic frameworks precursor for conversion of furfural to cyclopentanone. Chemical Engineering Journal, 2016, 299, 104-111.	6.6	125
70	Enhanced performance of glycerol to aromatics over Sn-containing HZSM-5 zeolites. RSC Advances, 2016, 6, 42984-42993.	1.7	45
71	Promoting effect of Ce on a Cu–Co–Al catalyst for the hydrogenolysis of glycerol to 1,2-propanediol. Catalysis Science and Technology, 2016, 6, 5656-5667.	2.1	21
72	The comparison of mesoporous HZSM-5 zeolite catalysts prepared by different mesoporous templates and their catalytic performance in the methanol to aromatics reaction. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 699-713.	0.8	15

#	Article	IF	CITATIONS
73	The growth mode of ZnO on HZSM-5 substrates by atomic layer deposition and its catalytic property in the synthesis of aromatics from methanol. Catalysis Science and Technology, 2016, 6, 3074-3086.	2.1	27
74	Hydrogenolysis of glycerol to propanediols on Cu–Ca–Al hydrotalcites derived catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 239-251.	0.8	20
75	Promoting effect of zirconium oxide on Cu–Al ₂ O ₃ catalyst for the hydrogenolysis of glycerol to 1,2-propanediol. Catalysis Science and Technology, 2016, 6, 4889-4900.	2.1	33
76	Preparation and characterization of inorganic acid catalytic membrane for biodiesel production from oleic acid. Asia-Pacific Journal of Chemical Engineering, 2015, 10, 851-857.	0.8	8
77	Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor. Bioresource Technology, 2015, 192, 68-74.	4.8	126
78	Liquid–liquid equilibria for ternary systems ethanol+heptane+phosphoric-based ionic liquids. Fluid Phase Equilibria, 2015, 386, 155-161.	1.4	24
79	Liquid–Liquid Equilibrium for Ternary System Methanol + Methyl Acetate + 1,3-Dimethylimidazolium Dimethylphosphate at Several Temperatures and Atmospheric Pressure. Journal of Chemical & Engineering Data, 2015, 60, 57-64.	1.0	12
80	Atomic Layer Deposition of ZnO Thin Films on ZSM-5 Zeolite and Its Catalytic Performance in Chichibabin Reaction. Catalysis Letters, 2015, 145, 947-954.	1.4	13
81	Cu/ZnO-USY: an efficient bifunctional catalyst for the hydrogenolysis of glycerol. Reaction Kinetics, Mechanisms and Catalysis, 2015, 115, 377-388.	0.8	9
82	Liquid extraction of polyhydric alcohols from water using [A336][SCN] as a solvent. Journal of Chemical Thermodynamics, 2015, 89, 35-40.	1.0	5
83	Performance of hierarchical HZSM-5 zeolites prepared by NaOH treatments in the aromatization of glycerol. RSC Advances, 2015, 5, 63697-63704.	1.7	68
84	(Liquid+liquid) extraction of methanol from alkanes using dialkylphosphate-based ionic liquids as solvents. Journal of Chemical Thermodynamics, 2015, 87, 110-116.	1.0	27
85	Supercritical CO2 extraction and response surface optimization of ginkgolic acids from ginkgo biloba exopleura. Korean Journal of Chemical Engineering, 2015, 32, 1649-1654.	1.2	8
86	Conversion of Furfural to Cyclopentanol on Cu/Zn/Al Catalysts Derived from Hydrotalcite-Like Materials. Catalysis Letters, 2015, 145, 1557-1565.	1.4	43
87	In situ synthesis and characterization of Ca–Mg–Al hydrotalcite on ceramic membrane for biodiesel production. Chinese Journal of Chemical Engineering, 2015, 23, 1035-1040.	1.7	5
88	Catalytic conversion of guaiacol to alcohols for bio-oil upgrading. Journal of Energy Chemistry, 2015, 24, 425-431.	7.1	41
89	An Efficient and Green Transesterification of Glycols into Cyclic Carbonates Catalysed by KF/Ca–Mg–Al Hydrotalcite. Journal of Chemical Research, 2014, 38, 679-681.	0.6	8
90	Synthesis of 2-amino-4,6-dimethoxypyrimidine with dimethyl carbonate as methylating agent. Research on Chemical Intermediates, 2014, 40, 1789-1797.	1.3	4

#	Article	IF	CITATIONS
91	Catalytic Hydroprocessing of Furfural to Cyclopentanol Over Ni/CNTs Catalysts: Model Reaction for Upgrading of Bio-oil. Catalysis Letters, 2014, 144, 235-241.	1.4	72
92	Selective hydrogenation of furfural to cyclopentanone over Cu-Ni-Al hydrotalcite-based catalysts. Korean Journal of Chemical Engineering, 2014, 31, 593-597.	1.2	60
93	Biodiesel production in a membrane reactor using MCM-41 supported solid acid catalyst. Bioresource Technology, 2014, 159, 286-291.	4.8	53
94	Upgrading of liquid fuel from fast pyrolysis of biomass over modified Ni/CNT catalysts. Fuel Processing Technology, 2014, 126, 12-18.	3.7	56
95	A study on the liquid–liquid equilibrium of 1-alkyl-3-methylimidazolium dialkylphosphate with methanol and dimethyl carbonate. Fluid Phase Equilibria, 2014, 382, 254-259.	1.4	24
96	Selective hydrogenolysis of glycerol to 1,2-propanediol on the modified ultrastable Y-type zeolite dispersed copper catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2014, 113, 543-556.	0.8	9
97	Study on Pyrolysis of Pine Sawdust with Solid Base and Acid Mixed Catalysts by Thermogravimetry–Fourier Transform Infrared Spectroscopy and Pyrolysis–Gas Chromatography/Mass Spectrometry. Energy & Fuels, 2014, 28, 4294-4299.	2.5	56
98	In-situ synthesis of MCM-41 on ceramic membranes and its application in transesterification as catalyst support for p-toluenesulfonic acid. Journal of Porous Materials, 2014, 21, 667-675.	1.3	3
99	Preparation, characterization and use of K2O, Al2O3 and SiO2 modified iron oxide as catalyst for the vapor phase synthesis of 2,3,6-trimethylphenol from m-cresol and methanol. Reaction Kinetics, Mechanisms and Catalysis, 2014, 112, 199-208.	0.8	3
100	A simple method for the fabrication of silica-based superhydrophobic surfaces. Journal of Coatings Technology Research, 2014, 11, 509-515.	1.2	20
101	Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5. Bioresource Technology, 2014, 155, 57-62.	4.8	68
102	Synthesis and characterization of poly(hydroxylic fluoroacrylate)/mSiO ₂ nanocomposite by <i>in situ</i> solution polymerization. Journal of Applied Polymer Science, 2013, 127, 3204-3212.	1.3	1
103	A novel synthetic method for preparation of some folates. Research on Chemical Intermediates, 2013, 39, 2211-2218.	1.3	2
104	Ammoxidation of 3-picoline to nicotinonitrile using silica-supported VCrO catalysts. Research on Chemical Intermediates, 2013, 39, 1353-1361.	1.3	6
105	Antigraffiti polyurethane coating containing fluorocarbon side chains grafted polymethylsiloxane. Journal of Coatings Technology Research, 2013, 10, 361-369.	1.2	16
106	Performance of Bulk and Silica Supported Vanadium–Chromium Catalysts in the Ammoxidation of 3-Picoline. Catalysis Letters, 2013, 143, 1200-1206.	1.4	5
107	Preparation and characterization of polyurethane clearcoats and investigation into their antigraffiti property. Journal of Coatings Technology Research, 2013, 10, 775-784.	1.2	12
108	Effect of supports on the structure and activity of vanadium-chromium oxide catalysts for ammoxidation of 3-picoline. Chinese Journal of Catalysis, 2013, 34, 1833-1838.	6.9	8

#	Article	IF	CITATIONS
109	Biodiesel Production from Soybean Oil in a Membrane Reactor over Hydrotalcite Based Catalyst: An Optimization Study. Energy & Fuels, 2013, 27, 6738-6742.	2.5	17
110	A Universal Procedure for Crude Glycerol Purification from Different Feedstocks in Biodiesel Production: Experimental and Simulation Study. Industrial & Engineering Chemistry Research, 2013, 52, 14291-14296.	1.8	89
111	Co-catalytic pyrolysis of biomass and waste triglyceride seed oil in a novel fluidized bed reactor to produce olefins and aromatics integrated with self-heating and catalyst regeneration processes. RSC Advances, 2013, 3, 5769.	1.7	58
112	Facile fabrication of superhydrophobic raspberryâ€like SIO ₂ /polystyrene composite particles. Polymer Composites, 2013, 34, 51-57.	2.3	25
113	Facile fabrication of water repellent coatings from vinyl functionalized SiO2 spheres. Journal of Coatings Technology Research, 2013, 10, 465-473.	1.2	29
114	Manganese(II) naphthenate as effective catalyst for the clean oxidation of 2-methylnaphthalene by hydrogen peroxide. Research on Chemical Intermediates, 2012, 38, 1839-1846.	1.3	7
115	A simple method for the separation of (6R)- and (6S)-5,6,7,8-tetrahydrofolic acid by reversed-phase HPLC with hydroxypropyl-î²-cyclodextrin as the mobile phase additive. Research on Chemical Intermediates, 2012, 38, 2237-2243.	1.3	1
116	Facile creation of superhydrophobic surface with fluorine–silicon polymer under ambient atmosphere. Journal of Coatings Technology Research, 2012, 9, 589-595.	1.2	7
117	Study on biodiesel from cotton seed oil by using heterogeneous super acid catalyst SO ₄ ^{2â^'} /ZrO ₂ . Asia-Pacific Journal of Chemical Engineering, 2012, 7, S222.	0.8	13
118	MICROWAVE PRETREATMENTâ€ASSISTED ETHANOL EXTRACTION OF CHLOROPHYLLS FROM <i>SPIRULINA PLATENSIS</i> . Journal of Food Process Engineering, 2012, 35, 792-799.	1.5	17
119	Synthesis of glycerin triacetate over molding zirconia-loaded sulfuric acid catalyst. Journal of Natural Gas Chemistry, 2012, 21, 25-28.	1.8	11
120	Production of Biofuels from High-Acid-Value Waste Oils. Energy & amp; Fuels, 2011, 25, 4638-4642.	2.5	36
121	Fabrication of superhydrophobic silica film by removing polystyrene spheres. Journal of Sol-Gel Science and Technology, 2011, 59, 334-337.	1.1	9
122	Biodiesel Preparation from Jatropha curcas Oil Catalyzed by Hydrotalcite Loaded With K2CO3. Applied Biochemistry and Biotechnology, 2010, 162, 1725-1736.	1.4	20
123	Biodiesel from palm oil via loading KF/Ca–Al hydrotalcite catalyst. Biomass and Bioenergy, 2010, 34, 1283-1288.	2.9	128
124	Engineered Polymer for Controlled Metal Nanoparticle Synthesis. Chemistry of Materials, 2010, 22, 2181-2183.	3.2	40
125	Hydroisomerization of n-Heptane Over Cr Promoted Pt-bearing H3PW12O40 Catalysts Supported on Dealuminated USY Zeolite. Catalysis Letters, 2009, 127, 360-367.	1.4	6
126	Biodiesel from Waste Cooking Oil via Heterogeneous Superacid Catalyst SO ₄ ^{2â^'} /ZrO ₂ . Energy & Fuels, 2009, 23, 569-572.	2.5	100

#	Article	IF	CITATIONS
127	Catalytic pyrolysis of distilled lemon grass over Ni-Al based oxides supported on MCM-41. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-12.	1.2	2
128	Efficient Conversion of Carbohydrates to 5-Hydroxymethylfurfural Over Poly(4-Styrenesulfonic Acid) Catalyst. Catalysis Letters, 0, , 1.	1.4	3