Anna K Naumova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1668154/publications.pdf

Version: 2024-02-01

46 papers

2,184 citations

304743

22

h-index

243625 44 g-index

48 all docs

48 docs citations

48 times ranked

3775 citing authors

#	Article	IF	CITATIONS
1	A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nature Genetics, 1997, 17, 353-356.	21.4	279
2	Allele-Specific Chromatin Remodeling in the ZPBP2/GSDMB/ORMDL3 Locus Associated with the Risk of Asthma and Autoimmune Disease. American Journal of Human Genetics, 2009, 85, 377-393.	6.2	262
3	A survey of genetic and epigenetic variation affecting human gene expression. Physiological Genomics, 2004, 16, 184-193.	2.3	228
4	Global patterns of cis variation in human cells revealed by high-density allelic expression analysis. Nature Genetics, 2009, 41, 1216-1222.	21.4	206
5	Report of 33 Novel AVPR2 Mutations and Analysis of 117 Families with X-Linked Nephrogenic Diabetes Insipidus. Journal of the American Society of Nephrology: JASN, 2000, 11, 1044-1054.	6.1	156
6	Twin study of genetic and aging effects on X chromosome inactivation. European Journal of Human Genetics, $2005,13,599\text{-}606$.	2.8	100
7	X Chromosome Inactivation in Carriers of Barth Syndrome. American Journal of Human Genetics, 1998, 63, 1457-1463.	6.2	71
8	Screening for pain phenotypes: Analysis of three congenic mouse strains on a battery of nine nociceptive assays. Pain, 2006, 126, 24-34.	4.2	70
9	Preferential amplification of the paternal allele of the N–myc gene in human neuroblastomas. Nature Genetics, 1993, 4, 191-194.	21.4	65
10	Sex- and age-dependent DNA methylation at the $17q12$ - $q21$ locus associated with childhood asthma. Human Genetics, 2013 , 132 , 811 - 822 .	3.8	59
11	A longitudinal study of X-inactivation ratio in human females. Human Genetics, 2004, 115, 387-92.	3.8	56
12	Interaction between genetic and epigenetic variation defines gene expression patterns at the asthma-associated locus 17q12-q21 in lymphoblastoid cell lines. Human Genetics, 2012, 131, 1161-1171.	3.8	55
13	A cloned unique gene of drosophila melanogaster contains a repetitive $3\hat{a}\in^2$ exon whose sequence is present at the $3\hat{a}\in^2$ ends of many different mRNAs. Cell, 1982, 28, 365-373.	28.9	48
14	Confirmation of maternal transmission ratio distortion at Om and direct evidence that the maternal and paternal "DDK syndrome―genes are linked. Mammalian Genome, 1997, 8, 642-646.	2.2	44
15	Pigmentary mosaicism in hypomelanosis of Ito. Human Genetics, 1998, 103, 441-449.	3.8	38
16	Imprinting and deviation from Mendelian transmission ratios. Genome, 2001, 44, 311-320.	2.0	37
17	Genomic Imprinting Variations in the Mouse Type 3 Deiodinase Gene Between Tissues and Brain Regions. Molecular Endocrinology, 2014, 28, 1875-1886.	3.7	34
18	Alternative splicing and imprinting control of the Meg3/Gtl2-Dlk1 locus in mouse embryos. Mammalian Genome, 2003, 14, 231-241.	2.2	32

#	Article	IF	CITATIONS
19	Role of DNA methylation in expression control of the IKZF3-GSDMA region in human epithelial cells. PLoS ONE, 2017, 12, e0172707.	2.5	31
20	Cell culture-induced aberrant methylation of the imprinted IG DMR in human lymphoblastoid cell lines. Epigenetics, 2010, 5, 50-60.	2.7	30
21	Transmission ratio distortion in the myotonic dystrophy locus in human preimplantation embryos. European Journal of Human Genetics, 2006, 14, 299-306.	2.8	26
22	Increased plasticity of genomic imprinting of Dlk1 in brain is due to genetic and epigenetic factors. Mammalian Genome, 2005, 16 , $127-135$.	2.2	22
23	Coordinated diurnal regulation of genes from the Dlk1–Dio3 imprinted domain: implications for regulation of clusters of non-paralogous genes. Human Molecular Genetics, 2008, 17, 15-26.	2.9	21
24	Chromosomal Localization of Mouse and Human Genes Encoding the Splicing Factors ASF/SF2 (SFRS1) and SC-35 (SFRS2). Genomics, 1995, 29, 70-79.	2.9	20
25	Novel imprinted transcripts from the <i>Dlk1-Gtl2 </i> irintergenic region, <i>Mico1 </i> irintergenic region, <i>Mico1 </i> irintergenic region, <i< td=""><td>2.7</td><td>20</td></i<>	2.7	20
26	X chromosome dosage and presence of SRY shape sex-specific differences in DNA methylation at an autosomal region in human cells. Biology of Sex Differences, 2018, 9, 10.	4.1	20
27	Inheritance patterns of maternal alleles in imprinted regions of the mouse genome at different stages of development. Mammalian Genome, 2002, 13, 24-29.	2.2	19
28	Imprinting defects in mouse embryos: stochastic errors or polymorphic phenotype?. Genesis, 2001, 31, 11-16.	1.6	18
29	Local genotype influences DNA methylation at two asthma-associated regions, 5q31 and 17q21, in a founder effect population. Journal of Medical Genetics, 2016, 53, 232-241.	3.2	17
30	Dynamics of Response to Asynapsis and Meiotic Silencing in Spermatocytes from Robertsonian Translocation Carriers. PLoS ONE, 2013, 8, e75970.	2.5	15
31	Sex Chromosomes and Sex Phenotype Contribute to Biased DNA Methylation in Mouse Liver. Cells, 2020, 9, 1436.	4.1	13
32	Parental Effect of DNA (Cytosine-5) Methyltransferase 1 on Grandparental-Origin-Dependent Transmission Ratio Distortion in Mouse Crosses and Human Families. Genetics, 2008, 178, 35-45.	2.9	12
33	Defective imprint resetting in carriers of Robertsonian translocation Rb (8.12). Mammalian Genome, 2010, 21, 377-387.	2.2	11
34	Oocyte heterogeneity with respect to the meiotic silencing of unsynapsed X chromosomes in the XY female mouse. Chromosoma, 2013, 122, 337-349.	2.2	11
35	Loss of the zona pellucida-binding protein 2 (Zpbp2) gene in mice impacts airway hypersensitivity and lung lipid metabolism in a sex-dependent fashion. Mammalian Genome, 2018, 29, 281-298.	2.2	7
36	Distinct roles of androgen receptor, estrogen receptor alpha, and BCL6 in the establishment of sex-biased DNA methylation in mouse liver. Scientific Reports, 2021, 11, 13766.	3.3	7

3

#	Article	IF	CITATIONS
37	<i>DNA methyltransferase 1</i> (<i>Dnmt1</i>) mutation affects <i>Snrpn</i> ii>imprinting in the mouse male germ line. Genome, 2012, 55, 673-682.	2.0	5
38	Robertsonian translocations modify genomic distribution of \hat{I}^3 H2AFX and H3.3 in mouse germ cells. Mammalian Genome, 2016, 27, 225-236.	2.2	5
39	Treatment of Allergic Asthma with Fenretinide Formulation (LAU-7b) Downregulates ORMDL Sphingolipid Biosynthesis Regulator 3 (<i>Ormdl3</i>) Expression and Normalizes Ceramide Imbalance. Journal of Pharmacology and Experimental Therapeutics, 2020, 373, 476-487.	2.5	5
40	Regulatory interaction between the ZPBP2-ORMDL3/Zpbp2-Ormdl3 region and the circadian clock. PLoS ONE, 2019, 14, e0223212.	2.5	3
41	A novel exomal ATRX mutation with preferential transmission to offspring: A case report and review of the literature for transmission ratio distortion in ATRX families. Molecular Medicine Reports, 2020, 22, 4561-4566.	2.4	2
42	Long-QT Syndrome. New England Journal of Medicine, 2007, 356, 1680-1680.	27.0	1
43	Transgenerational Epigenetic Effects and Complex Inheritance Patterns. , 2013, , 107-129.		1
44	A novel exomal ATRX mutation with preferential transmission to offspring: A case report and review of the literature for transmission ratio distortion in ATRX families. Molecular Medicine Reports, 2020, 22, 4561-4566.	2.4	1
45	Genetic and Epigenetic Variation at the H19 Imprinted Region and Its Effect on Birth Weight. , 2017, , 185-207.		0
46	When Does the Epigenome Become "Sexy�. BioEssays, 2018, 40, e1800120.	2. 5	0