
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1666992/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	MicroRNA turnover: a tale of tailing, trimming, and targets. Trends in Biochemical Sciences, 2023, 48, 26-39.	3.7	28
2	Abstract P5-17-09: A genome-wide CRISPR screen identifies PRMT5 as a novel therapeutic target in ER+/ <i>RB1</i> -deficient breast cancer. Cancer Research, 2022, 82, P5-17-09-P5-17-09.	0.4	0
3	RBM33 directs the nuclear export of transcripts containing GC-rich elements. Genes and Development, 2022, 36, 550-565.	2.7	12
4	NORAD-induced Pumilio phase separation is required for genome stability. Nature, 2021, 595, 303-308.	13.7	123
5	Noncoding RNAs: biology and applications—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 118-141.	1.8	13
6	Antisense-Mediated Transcript Knockdown Triggers Premature Transcription Termination. Molecular Cell, 2020, 77, 1044-1054.e3.	4.5	100
7	Last step in the path of LDL cholesterol from lysosome to plasma membrane to ER is governed by phosphatidylserine. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18521-18529.	3.3	84
8	A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science, 2020, 370, .	6.0	135
9	Ribosome Recycling by ABCE1 Links Lysosomal Function and Iron Homeostasis to 3Ê ¹ UTR-Directed Regulation and Nonsense-Mediated Decay. Cell Reports, 2020, 32, 107895.	2.9	36
10	elF5B drives integrated stress response-dependent translation of PD-L1 in lung cancer. Nature Cancer, 2020, 1, 533-545.	5.7	73
11	Loss of CHD1 Promotes Heterogeneous Mechanisms of Resistance to AR-Targeted Therapy via Chromatin Dysregulation. Cancer Cell, 2020, 37, 584-598.e11.	7.7	96
12	miR-26 suppresses adipocyte progenitor differentiation and fat production by targeting <i>Fbxl19</i> . Genes and Development, 2019, 33, 1367-1380.	2.7	50
13	MIR205HG Is a Long Noncoding RNA that Regulates Growth Hormone and Prolactin Production in the Anterior Pituitary. Developmental Cell, 2019, 49, 618-631.e5.	3.1	30
14	Suppression of Ribosomal Pausing by eIF5A Is Necessary to Maintain the Fidelity of Start Codon Selection. Cell Reports, 2019, 29, 3134-3146.e6.	2.9	44
15	PUMILIO hyperactivity drives premature aging of Norad-deficient mice. ELife, 2019, 8, .	2.8	65
16	PUMILIO, but not RBMX, binding is required for regulation of genomic stability by noncoding RNA NORAD. ELife, 2019, 8, .	2.8	55
17	Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell, 2018, 172, 393-407.	13.5	2,657
18	Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice. Molecular Therapy - Methods and Clinical Development, 2018, 8, 8-20.	1.8	23

#	Article	IF	CITATIONS
19	Loss of <i>Dis3l2</i> partially phenocopies Perlman syndrome in mice and results in up-regulation of <i>Igf2</i> in nephron progenitor cells. Genes and Development, 2018, 32, 903-908.	2.7	34
20	High-Throughput Characterization of Primary microRNA Transcripts. Methods in Molecular Biology, 2018, 1823, 1-9.	0.4	3
21	Mutations in microRNA processing genes in Wilms tumors derepress the <i>IGF2</i> regulator <i>PLAG1</i> . Genes and Development, 2018, 32, 996-1007.	2.7	40
22	An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature, 2017, 542, 197-202.	13.7	232
23	Targeting a Long Noncoding RNA in Breast Cancer. New England Journal of Medicine, 2016, 374, 2287-2289.	13.9	131
24	Transcriptional Regulation of miR-31 by Oncogenic KRAS Mediates Metastatic Phenotypes by Repressing RASA1. Molecular Cancer Research, 2016, 14, 267-277.	1.5	61
25	Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins. Cell, 2016, 164, 69-80.	13.5	723
26	StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology, 2015, 33, 290-295.	9.4	8,385
27	Genome-wide annotation of microRNA primary transcript structures reveals novel regulatory mechanisms. Genome Research, 2015, 25, 1401-1409.	2.4	91
28	Identification of miR-145 targets through an integrated omics analysis. Molecular BioSystems, 2015, 11, 197-207.	2.9	21
29	Systemic Delivery of scAAV8-Encoded MiR-29a Ameliorates Hepatic Fibrosis in Carbon Tetrachloride-Treated Mice. PLoS ONE, 2015, 10, e0124411.	1.1	37
30	Precise let-7 expression levels balance organ regeneration against tumor suppression. ELife, 2015, 4, e09431.	2.8	53
31	Seeing through themiRage of tissue complexity. Cell Cycle, 2014, 13, 2988-2989.	1.3	0
32	Tumor suppression by miR-26 overrides potential oncogenic activity in intestinal tumorigenesis. Genes and Development, 2014, 28, 2585-2590.	2.7	59
33	Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nature Communications, 2014, 5, 4802.	5.8	192
34	An Essential Mesenchymal Function for miR-143/145 in Intestinal Epithelial Regeneration. Cell, 2014, 157, 1104-1116.	13.5	188
35	Noncoding RNAs and Cancer. Cell, 2013, 153, 9-10.	13.5	40
36	A novel source for miR-21 expression through the alternative polyadenylation of VMP1 gene transcripts. Nucleic Acids Research, 2012, 40, 6821-6833.	6.5	79

#	Article	IF	CITATIONS
37	MicroRNAs in Stress Signaling and Human Disease. Cell, 2012, 148, 1172-1187.	13.5	1,471
38	Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. Journal of Clinical Investigation, 2012, 122, 2871-2883.	3.9	666
39	Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis. RNA Biology, 2011, 8, 1105-1114.	1.5	85
40	Restitution of Tumor Suppressor MicroRNAs Using a Systemic Nanovector Inhibits Pancreatic Cancer Growth in Mice. Molecular Cancer Therapeutics, 2011, 10, 1470-1480.	1.9	279
41	KIT signaling regulates MITF expression through miRNAs in normal and malignant mast cell proliferation. Blood, 2011, 117, 3629-3640.	0.6	60
42	Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes and Development, 2010, 24, 2754-2759.	2.7	273
43	P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6334-6339.	3.3	398
44	Myc: Maestro of MicroRNAs. Genes and Cancer, 2010, 1, 568-575.	0.6	123
45	Quantification of Clobal MicroRNA Abundance by Selective Isotachophoresis. Analytical Chemistry, 2010, 82, 9631-9635.	3.2	31
46	Identifying targets of miR-143 using a SILAC-based proteomic approach. Molecular BioSystems, 2010, 6, 1873.	2.9	58
47	Cell–cell contact globally activates microRNA biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7016-7021.	3.3	122
48	Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3384-3389.	3.3	355
49	A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells. Cancer Biology and Therapy, 2009, 8, 2013-2024.	1.5	108
50	MicroRNA miR-155 is a biomarker of early pancreatic neoplasia. Cancer Biology and Therapy, 2009, 8, 340-346.	1.5	288
51	Identification of miRâ€21 targets in breast cancer cells using a quantitative proteomic approach. Proteomics, 2009, 9, 1374-1384.	1.3	113
52	c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458, 762-765.	13.7	1,801
53	Tumors line up for a letdown. Nature Genetics, 2009, 41, 768-769.	9.4	11
54	Therapeutic microRNA Delivery Suppresses Tumorigenesis in a Murine Liver Cancer Model. Cell, 2009, 137, 1005-1017.	13.5	1,634

#	Article	IF	CITATIONS
55	Abate and Switch: miR-145 in Stem Cell Differentiation. Cell, 2009, 137, 606-608.	13.5	38
56	Epigenetic Silencing of MicroRNA miR-107 Regulates Cyclin-Dependent Kinase 6 Expression in Pancreatic Cancer. Pancreatology, 2009, 9, 293-301.	0.5	197
57	miR-21: An Androgen Receptor–Regulated MicroRNA that Promotes Hormone-Dependent and Hormone-Independent Prostate Cancer Growth. Cancer Research, 2009, 69, 7165-7169.	0.4	377
58	Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genetics, 2008, 40, 43-50.	9.4	1,203
59	Circular reasoning: microRNAs and cell-cycle control. Trends in Biochemical Sciences, 2008, 33, 474-481.	3.7	102
60	miRiad Roles for the miR-17-92 Cluster in Development and Disease. Cell, 2008, 133, 217-222.	13.5	1,012
61	Functional integration of microRNAs into oncogenic and tumor suppressor pathways. Cell Cycle, 2008, 7, 2493-2499.	1.3	53
62	MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proceedings of the United States of America, 2008, 105, 1516-1521.	3.3	925
63	Analysis of regulatory network topology reveals functionally distinct classes of microRNAs. Nucleic Acids Research, 2008, 36, 6494-6503.	6.5	81
64	c-Myb oncoprotein is an essential target of the dleu2 tumor suppressor microRNA cluster. Cancer Biology and Therapy, 2008, 7, 1758-1764.	1.5	54
65	Transactivation of miR-34a by p53 BroadlyÂInfluences Gene Expression andÂPromotesÂApoptosis. Molecular Cell, 2007, 26, 745-752.	4.5	1,844
66	A Hexanucleotide Element Directs MicroRNA Nuclear Import. Science, 2007, 315, 97-100.	6.0	626
67	microRNAs in Vertebrate Physiology and Human Disease. Annual Review of Genomics and Human Genetics, 2007, 8, 215-239.	2.5	400
68	Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Experimental Hematology, 2007, 35, 1657-1667.	0.2	191
69	Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nature Genetics, 2006, 38, 1060-1065.	9.4	1,000
70	Dysregulated Expression of miRNAs in Polycythemia Vera Erythroid Progenitors Blood, 2006, 108, 3613-3613.	0.6	0
71	c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005, 435, 839-843.	13.7	2,618
72	MicroRNAs: Critical Regulators of Development, Cellular Physiology and Malignancy. Cell Cycle, 2005, 4, 1179-1184.	1.3	388

#	Article	IF	CITATIONS
73	Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nature Genetics, 2004, 36, 1073-1078.	9.4	744
74	Separable Roles for rent1/hUpf1 in Altered Splicing and Decay of Nonsense Transcripts. Science, 2002, 298, 419-422.	6.0	246
75	When the Message Goes Awry. Cell, 2001, 107, 411-414.	13.5	274
76	Novel Upf2p Orthologues Suggest a Functional Link between Translation Initiation and Nonsense Surveillance Complexes. Molecular and Cellular Biology, 2000, 20, 8944-8957.	1.1	147