
Federico D Ariel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1666831/publications.pdf Version: 2024-02-01

FEDERICO D'ARIEL

#	Article	IF	CITATIONS
1	The lncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA. Molecular Plant, 2022, 15, 840-856.	3.9	25
2	<scp>TCP15</scp> interacts with <scp>GOLDEN2‣IKE</scp> 1 to control cotyledon opening in Arabidopsis. Plant Journal, 2022, 110, 748-763.	2.8	13
3	Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature. Nature Communications, 2022, 13, 1310.	5.8	25
4	Non-B DNA structures emerging from plant genomes. Trends in Plant Science, 2022, , .	4.3	4
5	R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants. Nature Plants, 2022, 8, 402-418.	4.7	47
6	Cytochrome <i>c</i> and the transcription factor ABl4 establish a molecular link between mitochondria and ABAâ€dependent seed germination. New Phytologist, 2022, 235, 1780-1795.	3.5	4
7	Functional classification of plant long noncoding RNAs: a transcript is known by the company it keeps. New Phytologist, 2021, 229, 1251-1260.	3.5	48
8	Class I TCP proteins TCP14 and TCP15 are required for elongation and gene expression responses to auxin. Plant Molecular Biology, 2021, 105, 147-159.	2.0	31
9	When junk DNA turns functional: transposon-derived non-coding RNAs in plants. Journal of Experimental Botany, 2021, 72, 4132-4143.	2.4	23
10	Plant Long Noncoding RNAs: New Players in the Field of Post-Transcriptional Regulations. Non-coding RNA, 2021, 7, 12.	1.3	18
11	The lncRNA <i>APOLO</i> and the transcription factor WRKY42 target common cell wall EXTENSIN encoding genes to trigger root hair cell elongation. Plant Signaling and Behavior, 2021, 16, 1920191.	1.2	19
12	The IncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold. Molecular Plant, 2021, 14, 937-948.	3.9	72
13	Polycomb-dependent differential chromatin compartmentalization determines gene coregulation in <i>Arabidopsis</i> . Genome Research, 2021, 31, 1230-1244.	2.4	36
14	ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture. GigaScience, 2021, 10, .	3.3	13
15	Deep Learning for the discovery of new pre-miRNAs: Helping the fight against COVID-19. Machine Learning With Applications, 2021, 6, 100150.	3.0	11
16	CURLY LEAF Regulates MicroRNA Activity by Controlling ARGONAUTE 1 Degradation in Plants. Molecular Plant, 2020, 13, 72-87.	3.9	24
17	The <i>Arabidopsis</i> Inc <scp>RNA </scp> <i><scp>ASCO</scp></i> modulates the transcriptome through interaction with splicing factors. EMBO Reports, 2020, 21, e48977.	2.0	57
18	Long noncoding RNAs shape transcription in plants. Transcription, 2020, 11, 160-171.	1.7	24

Federico D Ariel

#	Article	IF	CITATIONS
19	Class I TCP transcription factors regulate trichome branching and cuticle development in Arabidopsis. Journal of Experimental Botany, 2020, 71, 5438-5453.	2.4	26
20	Evolution of the Small Family of Alternative Splicing Modulators Nuclear Speckle RNA-Binding Proteins in Plants. Genes, 2020, 11, 207.	1.0	10
21	R-Loop Mediated trans Action of the APOLO Long Noncoding RNA. Molecular Cell, 2020, 77, 1055-1065.e4.	4.5	164
22	Lateral root development differs between main and secondary roots and depends on the ecotype. Plant Signaling and Behavior, 2020, 15, 1755504.	1.2	9
23	Class-I TCP Transcription Factors Activate the <i>SAUR63</i> Gene Subfamily in Gibberellin-Dependent Stamen Filament Elongation. Plant Physiology, 2020, 182, 2096-2110.	2.3	42
24	Dynamic regulation of chromatin topology and transcription by inverted repeat-derived small RNAs in sunflower. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17578-17583.	3.3	29
25	Eiger/TNFα-mediated Dilp8 and ROS production coordinate intra-organ growth in Drosophila. PLoS Genetics, 2019, 15, e1008133.	1.5	33
26	Class I TCP Transcription Factors Target the Gibberellin Biosynthesis Gene <i>GA20ox1</i> and the Growth-Promoting Genes <i>HBI1</i> and <i>PRE6</i> during Thermomorphogenic Growth in <i>Arabidopsis</i> . Plant and Cell Physiology, 2019, 60, 1633-1645.	1.5	49
27	AtHB23 participates in the gene regulatory network controlling root branching, and reveals differences between secondary and tertiary roots. Plant Journal, 2019, 100, 1224-1236.	2.8	24
28	Splicing regulation by long noncoding RNAs. Nucleic Acids Research, 2018, 46, 2169-2184.	6.5	226
29	Nuclear Speckle RNA Binding Proteins Remodel Alternative Splicing and the Non-coding Arabidopsis Transcriptome to Regulate a Cross-Talk Between Auxin and Immune Responses. Frontiers in Plant Science, 2018, 9, 1209.	1.7	41
30	Ploidy-dependent changes in the epigenome of symbiotic cells correlate with specific patterns of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4543-4548.	3.3	50
31	Plant Epigenetics: Non-coding RNAs as Emerging Regulators. RNA Technologies, 2017, , 129-147.	0.2	0
32	Alternative splicing: The lord of the rings. Nature Plants, 2017, 3, 17065.	4.7	5
33	Class I and Class II TCP Transcription Factors Modulate SOC1-Dependent Flowering at Multiple Levels. Molecular Plant, 2017, 10, 1571-1574.	3.9	56
34	The Nuclear Ribonucleoprotein SmD1 Interplays with Splicing, RNA Quality Control, and Posttranscriptional Gene Silencing in Arabidopsis. Plant Cell, 2016, 28, 426-438.	3.1	46
35	The chloroplastic DEVHâ€box RNA helicase <scp>INCREASED SIZE EXCLUSION LIMIT 2</scp> involved in plasmodesmata regulation is required for group II intron splicing. Plant, Cell and Environment, 2016, 39, 165-173.	2.8	36
36	Put your 3D glasses on: plant chromatin is on show. Journal of Experimental Botany, 2016, 67, 3205-3221.	2.4	59

Federico D Ariel

#	Article	IF	CITATIONS
37	Chromatin architecture: A new dimension in the dynamic control of gene expression. Plant Signaling and Behavior, 2016, 11, e1232224.	1.2	1
38	LHP1 Regulates H3K27me3 Spreading and Shapes the Three-Dimensional Conformation of the Arabidopsis Genome. PLoS ONE, 2016, 11, e0158936.	1.1	97
39	A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture. PLoS ONE, 2015, 10, e0138276.	1.1	25
40	Battles and hijacks: noncoding transcription in plants. Trends in Plant Science, 2015, 20, 362-371.	4.3	176
41	A phylogenetically conserved group of NF-Y transcription factors interact to control nodulation in legumes. Plant Physiology, 2015, 169, pp.01144.2015.	2.3	72
42	Long Noncoding RNA Modulates Alternative Splicing Regulators in Arabidopsis. Developmental Cell, 2014, 30, 166-176.	3.1	311
43	The BAF60 Subunit of the SWI/SNF Chromatin-Remodeling Complex Directly Controls the Formation of a Gene Loop at <i>FLOWERING LOCUS C</i> in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 538-551.	3.1	82
44	Noncoding Transcription by Alternative RNA Polymerases Dynamically Regulates an Auxin-Driven Chromatin Loop. Molecular Cell, 2014, 55, 383-396.	4.5	330
45	Two <scp>CCAAT</scp> â€boxâ€binding transcription factors redundantly regulate early steps of the legumeâ€rhizobia endosymbiosis. Plant Journal, 2014, 79, 757-768.	2.8	105
46	Two Direct Targets of Cytokinin Signaling Regulate Symbiotic Nodulation in <i>Medicago truncatula</i> À Â. Plant Cell, 2012, 24, 3838-3852.	3.1	136
47	Dual involvement of a <i>Medicago truncatula</i> NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. Plant Journal, 2012, 70, 220-230.	2.8	111
48	Dual RNAs in plants. Biochimie, 2011, 93, 1950-1954.	1.3	41
49	MtCRE1â€dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in <i>Medicago truncatula</i> . Plant Journal, 2011, 65, 622-633.	2.8	257
50	The LOB-like transcription factor MtLBD1 controls <i>Medicago truncatula</i> root architecture under salt stress. Plant Signaling and Behavior, 2010, 5, 1666-1668.	1.2	39
51	Transcriptional Control of a Plant Stem Cell Niche. Developmental Cell, 2010, 18, 841-853.	3.1	221
52	Environmental Regulation of Lateral Root Emergence in <i>Medicago truncatula</i> Requires the HD-Zip I Transcription Factor HB1. Plant Cell, 2010, 22, 2171-2183.	3.1	156
53	Two ABREs, two redundant root-specific and one W-box cis-acting elements are functional in the sunflower HAHB4 promoter. Plant Physiology and Biochemistry, 2008, 46, 860-867.	2.8	21
54	The sunflower HD-Zip transcription factor HAHB4 is up-regulated in darkness, reducing the transcription of photosynthesis-related genes. Journal of Experimental Botany, 2008, 59, 3143-3155.	2.4	36

#	Article	IF	CITATIONS
55	The true story of the HD-Zip family. Trends in Plant Science, 2007, 12, 419-426.	4.3	508