
Yukatsu Shichibu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1666791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-Scale Synthesis of Thiolated Au25Clusters via Ligand Exchange Reactions of Phosphine-Stabilized Au11Clusters. Journal of the American Chemical Society, 2005, 127, 13464-13465.	13.7	413
2	Ubiquitous 8 and 29 kDa Gold:Alkanethiolate Cluster Compounds: Mass-Spectrometric Determination of Molecular Formulas and Structural Implications. Journal of the American Chemical Society, 2008, 130, 8608-8610.	13.7	377
3	Extremely High Stability of Glutathionate-Protected Au25 Clusters Against Core Etching. Small, 2007, 3, 835-839.	10.0	373
4	Biicosahedral Gold Clusters [Au25(PPh3)10(SCnH2n+1)5Cl2]2+(n= 2â^18):  A Stepping Stone to Cluster-Assembled Materials. Journal of Physical Chemistry C, 2007, 111, 7845-7847.	3.1	349
5	Origin of Magic Stability of Thiolated Gold Clusters:  A Case Study on Au ₂₅ (SC ₆ H ₁₃) ₁₈ . Journal of the American Chemical Society, 2007, 129, 11322-11323.	13.7	332
6	HClâ€Induced Nuclearity Convergence in Diphosphineâ€Protected Ultrasmall Gold Clusters: A Novel Synthetic Route to "Magicâ€Numberâ€∙Au ₁₃ Clusters. Small, 2010, 6, 1216-1220.	10.0	255
7	Phosphine-Ligated Gold Clusters with Core+ <i>exo</i> Geometries: Unique Properties and Interactions at the Ligand–Cluster Interface. Accounts of Chemical Research, 2018, 51, 3125-3133.	15.6	144
8	Generation of Small Gold Clusters with Unique Geometries through Clusterâ€ŧoâ€Cluster Transformations: Octanuclear Clusters with Edgeâ€sharing Gold Tetrahedron Motifs. Angewandte Chemie - International Edition, 2011, 50, 7442-7445.	13.8	135
9	Facile synthesis and optical properties of magic-number Au13 clusters. Nanoscale, 2012, 4, 4125.	5.6	122
10	An Inherently Chiral Au ₂₄ Framework with Doubleâ€Helical Hexagold Strands. Angewandte Chemie - International Edition, 2018, 57, 7855-7859.	13.8	121
11	Protonation-Induced Chromism of Pyridylethynyl-Appended [core+ <i>exo</i>]-Type Au ₈ Clusters. Resonance-Coupled Electronic Perturbation through π-Conjugated Group. Journal of the American Chemical Society, 2013, 135, 16078-16081.	13.7	117
12	Clusterâ€"ï€ electronic interaction in a superatomic Au ₁₃ cluster bearing σ-bonded acetylide ligands. Chemical Communications, 2015, 51, 13519-13522.	4.1	93
13	Hydrogen bonds to Au atoms in coordinated gold clusters. Nature Communications, 2017, 8, 576.	12.8	92
14	[Au ₇] ³⁺ : A Missing Link in the Four-Electron Gold Cluster Family. Journal of the American Chemical Society, 2014, 136, 12892-12895.	13.7	81
15	Unique [core+two] structure and optical property of a dodeca-ligated undecagold cluster: critical contribution of the exo gold atoms to the electronic structure. Chemical Communications, 2012, 48, 7559.	4.1	80
16	Tunneling resistance of double-barrier tunneling structures with an alkanethiol-protected Au nanoparticle. Physical Review B, 2005, 72, .	3.2	65
17	Ligand-Based Toolboxes for Tuning of the Optical Properties of Subnanometer Gold Clusters. Journal of Physical Chemistry Letters, 2016, 7, 4267-4274.	4.6	50
18	Electronic Properties of [Core+ <i>exo</i>]-type Gold Clusters: Factors Affecting the Unique Optical Transitions. Inorganic Chemistry, 2013, 52, 6570-6575.	4.0	43

Үикатѕи Ѕнісніви

#	Article	IF	CITATIONS
19	An Inherently Chiral Au ₂₄ Framework with Doubleâ€Helical Hexagold Strands. Angewandte Chemie, 2018, 130, 7981-7985.	2.0	32
20	Catalytic Conversion of a Chitin-Derived Sugar Alcohol to an Amide-Containing Isosorbide Analog. ACS Sustainable Chemistry and Engineering, 2019, 7, 14883-14888.	6.7	22
21	Unusual Attractive Au–π Interactions in Small Diacetyleneâ€Modified Gold Clusters. Angewandte Chemie - International Edition, 2019, 58, 2443-2447.	13.8	22
22	Chiroptical activity of Au ₁₃ clusters: experimental and theoretical understanding of the origin of helical charge movements. Nanoscale Advances, 2021, 3, 1005-1011.	4.6	20
23	Impact of Skeletal Isomerization of Ultrasmall Gold Clusters on Electrochemical Properties: Voltammetric Profiles of Nonspoked Octanuclear Clusters Journal of Physical Chemistry C, 2015, 119, 10995-10999.	3.1	19
24	Chiral Polyurethane Synthesis Leading to π-Stacked 2/1-Helical Polymer and Cyclic Compounds. ACS Macro Letters, 2015, 4, 901-906.	4.8	19
25	Facile modulation of optical properties of octagold clusters through the control of ligand-mediated interactions. Physical Chemistry Chemical Physics, 2016, 18, 19433-19439.	2.8	19
26	Terahertz Raman Spectroscopy of Ligand-Protected Au ₈ Clusters. Journal of Physical Chemistry Letters, 2020, 11, 7996-8001.	4.6	19
27	Preparation of Carbodiimides with One-Handed Axial Chirality. Journal of the American Chemical Society, 2018, 140, 15577-15581.	13.7	18
28	Photoluminescence Properties of [Core+ <i>exo</i>]-Type Au ₆ Clusters: Insights into the Effect of Ligand Environments on the Excitation Dynamics. Journal of Physical Chemistry C, 2019, 123, 6934-6939.	3.1	14
29	Ab initiostudy on surface segregation of hydrogen from diamond C(100) surfaces. Physical Review B, 2002, 65, .	3.2	12
30	Aggregation-Mode-Dependent Optical Properties of Cationic Gold Clusters: Formation of Ordered Assemblies in Solution and Unique Optical Responses. Journal of Physical Chemistry C, 2020, 124, 16209-16215.	3.1	11
31	Self-promoted solid-state covalent networking of Au ₂₅ (SR) ₁₈ through reversible disulfide bonds. A critical effect of the nanocluster in oxidation processes. Nanoscale, 2021, 13, 9971-9977.	5.6	11
32	Hexanuclear Platinum(II) Thiolate Macrocyclic Host: Charge-Transfer-Driven Inclusion of a Ag ^I Ion Guest. Inorganic Chemistry, 2016, 55, 9147-9149.	4.0	8
33	Diarsine- vs diphosphine-protected Au13 clusters: Effect of subtle geometric differences on optical property and electronic structure. Journal of Chemical Physics, 2021, 155, 054301.	3.0	7
34	Aggregation-induced chirality amplification of optically active fluorescent polyurethane and a cyclic dimer in the ground and excited states. Chemical Communications, 2022, 58, 1029-1032.	4.1	6
35	A photoâ€degradable helix: Synthesis, structure, and photolysis of optically active poly[2,7â€bis(4â€ <i>t</i> â€butylphenyl)â€9â€methylfluorenâ€9â€yl acrylate]. Journal of Polymer Science Part A 49, 945-956.	, 2011,	5
36	Unusual Attractive Au–π Interactions in Small Diacetyleneâ€Modified Gold Clusters. Angewandte Chemie, 2019, 131, 2465-2469.	2.0	5

Үикатѕи Ѕнісніви

#	Article	IF	CITATIONS
37	Ab InitioStudy on Electronic Structures of Pentacene Molecular Crystals with Dopants. Japanese Journal of Applied Physics, 2003, 42, 5472-5476.	1.5	4
38	Catalytic Synthesis of Oxazolidinones from a Chitin-Derived Sugar Alcohol. Bulletin of the Chemical Society of Japan, 2022, 95, 1054-1059.	3.2	3
39	Chiral Gold Clusters with Crosslinking Ligands: Geometric Structures and Chiroptical Activities. ChemNanoMat, 2022, 8, .	2.8	3
40	Facile Diastereoseparation of Glycosyl Sulfoxides by Chiral Stationary Phase. Chirality, 2016, 28, 534-539.	2.6	2
41	Synthesis and stereochemistry of helical polyurethanes based on 2,2′-dihydroxy-1,1′-binaphthyl and diisocyanatobenzenes. Polymer Chemistry, 2020, 11, 1134-1144.	3.9	2
42	A Triad Fluorenone Derivative Bearing Two Imidazole Groups That Switches between Three States by Base and Acid Stimuli. Chemistry Letters, 2021, 50, 1363-1367.	1.3	0