
Botta Alain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1666743/publications.pdf Version: 2024-02-01

ΒΟΤΤΑ ΔΙΑΙΝ

#	Article	IF	CITATIONS
1	Functional vulnerability of liver macrophages to capsules defines virulence of blood-borne bacteria. Journal of Experimental Medicine, 2022, 219, .	4.2	13
2	IL1β Promotes Immune Suppression in the Tumor Microenvironment Independent of the Inflammasome and Gasdermin D. Cancer Immunology Research, 2021, 9, 309-323.	1.6	48
3	Hepatocarcinoma Induces a Tumor Necrosis Factor-Dependent Kupffer Cell Death Pathway That Favors Its Proliferation Upon Partial Hepatectomy. Frontiers in Oncology, 2020, 10, 547013.	1.3	7
4	Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 2019, 51, 638-654.e9.	6.6	384
5	The role of hepatic macrophages in liver metastasis. Cellular Immunology, 2018, 330, 202-215.	1.4	39
6	The Transcription Factor ZEB2 Is Required to Maintain the Tissue-Specific Identities of Macrophages. Immunity, 2018, 49, 312-325.e5.	6.6	172
7	Molecular Imaging with Kupffer Cell-Targeting Nanobodies for Diagnosis and Prognosis in Mouse Models of Liver Pathogenesis. Molecular Imaging and Biology, 2017, 19, 49-58.	1.3	24
8	<i>Trypanosoma musculi</i> Infection in Mice Critically Relies on Mannose Receptor–Mediated Arginase Induction by a <i>Tb</i> KHC1 Kinesin H Chain Homolog. Journal of Immunology, 2017, 199, 1762-1771.	0.4	10
9	Trypanosoma brucei growth control by TNF in mammalian host is independent of the soluble form of the cytokine. Scientific Reports, 2017, 7, 6165.	1.6	8
10	Inhibition of pannexin1 channels alleviates acetaminophen-induced hepatotoxicity. Archives of Toxicology, 2017, 91, 2245-2261.	1.9	16
11	MIF-Mediated Hemodilution Promotes Pathogenic Anemia in Experimental African Trypanosomosis. PLoS Pathogens, 2016, 12, e1005862.	2.1	20
12	Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells. Nature Communications, 2016, 7, 10321.	5.8	604
13	Involvement of connexin43 in acetaminophen-induced liver injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1111-1121.	1.8	29
14	Iron Homeostasis and <i>Trypanosoma brucei</i> Associated Immunopathogenicity Development: A Battle/Quest for Iron. BioMed Research International, 2015, 2015, 1-15.	0.9	26
15	Ly6C- Monocytes Regulate Parasite-Induced Liver Inflammation by Inducing the Differentiation of Pathogenic Ly6C+ Monocytes into Macrophages. PLoS Pathogens, 2015, 11, e1004873.	2.1	45
16	Monitoring liver macrophages using nanobodies targeting Vsig4: Concanavalin A induced acute hepatitis as paradigm. Immunobiology, 2015, 220, 200-209.	0.8	27
17	Murine Liver Myeloid Cell Isolation Protocol. Bio-protocol, 2015, 5, .	0.2	9
18	MIF Contributes to Trypanosoma brucei Associated Immunopathogenicity Development. PLoS Pathogens, 2014, 10, e1004414.	2.1	45

BOTTA ALAIN

#	Article	IF	CITATIONS
19	African trypanosome control in the insect vector and mammalian host. Trends in Parasitology, 2014, 30, 538-547.	1.5	43
20	African Trypanosomiasis as Paradigm for Involvement of the Mononuclear Phagocyte System in Pathogenicity During Parasite Infection. , 2014, , 349-374.		0
21	Contribution of myeloid cell subsets to liver fibrosis in parasite infection. Journal of Pathology, 2013, 229, 186-197.	2.1	21
22	A Trypanosoma brucei Kinesin Heavy Chain Promotes Parasite Growth by Triggering Host Arginase Activity. PLoS Pathogens, 2013, 9, e1003731.	2.1	48
23	The <scp>CD</scp> 20 homolog <scp>M</scp> s4a8a integrates pro―and antiâ€inflammatory signals in novel <scp>M</scp> 2â€like macrophages and is expressed in parasite infection. European Journal of Immunology, 2012, 42, 2971-2982.	1.6	14
24	Adenylate Cyclases of <i>Trypanosoma brucei</i> Inhibit the Innate Immune Response of the Host. Science, 2012, 337, 463-466.	6.0	130
25	ILâ€10 limits production of pathogenic TNF by M1 myeloid cells through induction of nuclear NFâ€₽B p50 member in <i>Trypanosoma congolense</i> infectionâ€resistant C57BL/6 mice. European Journal of Immunology, 2011, 41, 3270-3280.	1.6	40
26	Similar inflammatory DC maturation signatures induced by TNF or <i>Trypanosoma brucei</i> antigens instruct default Th2â€cell responses. European Journal of Immunology, 2011, 41, 3479-3494.	1.6	37
27	Myeloid-Derived Suppressor Cells Infiltrate the Heart in Acute <i>Trypanosoma</i> â€^ <i>cruzi</i> Infection. Journal of Immunology, 2011, 187, 2656-2665.	0.4	74
28	Myeloidâ€derived suppressor cells in parasitic infections. European Journal of Immunology, 2010, 40, 2976-2985.	1.6	107
29	The Central Role of Macrophages in Trypanosomiasis-Associated Anemia:Rationale for Therapeutical Approaches. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2010, 10, 71-82.	0.6	40
30	Tip-DC Development during Parasitic Infection Is Regulated by IL-10 and Requires CCL2/CCR2, IFN-Î ³ and MyD88 Signaling. PLoS Pathogens, 2010, 6, e1001045.	2.1	124
31	IL-10 Dampens TNF/Inducible Nitric Oxide Synthase-Producing Dendritic Cell-Mediated Pathogenicity during Parasitic Infection. Journal of Immunology, 2009, 182, 1107-1118.	0.4	108
32	Identification of a Parasitic Immunomodulatory Protein Triggering the Development of Suppressive M1 Macrophages during African Trypanosomiasis. Journal of Infectious Diseases, 2009, 200, 1849-1860.	1.9	31
33	Exosites mediate the antiâ€inflammatory effects of a multifunctional serpin from the saliva of the tick <i>lxodesâ€fricinus</i> . FEBS Journal, 2009, 276, 3235-3246.	2.2	73
34	Differentiation, activation and function of CD11b+Ly6C+ TNF/iNOS-producing dendritic cells during parasitic infection. Cytokine, 2009, 48, 135.	1.4	0
35	Understanding the role of monocytic cells in liver inflammation using parasite infection as a model. Immunobiology, 2009, 214, 737-747.	0.8	25
36	Both Type-I and Type-II Responses Contribute to Murine Trypanotolerance. Journal of Veterinary Medical Science, 2009, 71, 313-318.	0.3	22

Botta Alain

#	Article	IF	CITATIONS
37	Quantitative Differences in Immune Responses in Mouse Strains that Differ in their Susceptibility to Trypanosoma brucei brucei Infection. Journal of Veterinary Medical Science, 2009, 71, 951-956.	0.3	8
38	Alternatively Activated Myeloid Cells Limit Pathogenicity Associated with African Trypanosomiasis through the IL-10 Inducible Gene Selenoprotein P. Journal of Immunology, 2008, 180, 6168-6175.	0.4	92
39	Experimental Expansion of the Regulatory T Cell Population Increases Resistance to African Trypanosomiasis. Journal of Infectious Diseases, 2008, 198, 781-791.	1.9	44
40	Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell–suppressive activity. Blood, 2008, 111, 4233-4244.	0.6	1,081
41	African Trypanosomiasis: Naturally Occurring Regulatory T Cells Favor Trypanotolerance by Limiting Pathology Associated with Sustained Type 1 Inflammation. Journal of Immunology, 2007, 179, 2748-2757.	0.4	81
42	African trypanosomosis: From immune escape and immunopathology to immune intervention. Veterinary Parasitology, 2007, 148, 3-13.	0.7	57
43	Alternatively activated macrophages in protozoan infections. Current Opinion in Immunology, 2007, 19, 454-459.	2.4	85
44	Relationship between hemolytic molecules in Eisenia fetida earthworms. Developmental and Comparative Immunology, 2006, 30, 381-392.	1.0	28
45	Comparative study of the CCF-like pattern recognition protein in different Lumbricid species. Developmental and Comparative Immunology, 2006, 30, 765-771.	1.0	25
46	Classical and alternative activation of mononuclear phagocytes: Picking the best of both worlds for tumor promotion. Immunobiology, 2006, 211, 487-501.	0.8	309
47	Identification of a common gene signature for type II cytokine–associated myeloid cells elicited in vivo in different pathologic conditions. Blood, 2006, 108, 575-583.	0.6	155
48	Evidence for proteins involved in prophenoloxidase cascade Eisenia fetida earthworms. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2006, 176, 581-587.	0.7	23
49	An invertebrate TNF functional analogue activates macrophages via lectin-saccharide interaction with ion channels. International Immunology, 2006, 18, 1663-1670.	1.8	12
50	Domains and Maturation Processes That Regulate the Activity of ADAMTS-2, a Metalloproteinase Cleaving the Aminopropeptide of Fibrillar Procollagens Types I–III and V. Journal of Biological Chemistry, 2005, 280, 34397-34408.	1.6	98
51	Reactive Oxygen Species and 12/15-Lipoxygenase Contribute to the Antiproliferative Capacity of Alternatively Activated Myeloid Cells Elicited during Helminth Infection. Journal of Immunology, 2005, 174, 6095-6104.	0.4	126
52	Antiprotozoan and Antiviral Activities of Non-Cytotoxic Truncated and Variant Analogues of Mussel Defensin. Evidence-based Complementary and Alternative Medicine, 2004, 1, 167-174.	0.5	46
53	Alternatively activated macrophages during parasite infections. Trends in Parasitology, 2004, 20, 126-133.	1.5	261
54	Effect of experimental microbial challenge on the expression of defense molecules in Eisenia foetida earthworm. Developmental and Comparative Immunology, 2004, 28, 701-711.	1.0	40

BOTTA ALAIN

#	Article	lF	CITATIONS
55	Infection Stage-Dependent Modulation of Macrophage Activation in Trypanosoma congolense -Resistant and -Susceptible Mice. Infection and Immunity, 2002, 70, 6180-6187.	1.0	62
56	Trypanosoma cruzi is lysed by coelomic cytolytic factor-1, an invertebrate analogue of tumor necrosis factor, and induces phenoloxidase activity in the coelomic fluid of Eisenia foetida foetida. Developmental and Comparative Immunology, 2002, 26, 27-34.	1.0	29
57	An invertebrate defense molecule activates membrane conductance in mammalian cells by means of its lectin-like domain. Developmental and Comparative Immunology, 2002, 26, 35-43.	1.0	11
58	FIZZ1 and Ym as Tools to Discriminate between Differentially Activated Macrophages. Autoimmunity, 2002, 9, 151-159.	0.6	118
59	CCF, an invertebrate analogue of TNF, is not related to the other lytic components fromEisenia foetida earthworm. BioEssays, 2002, 24, 974-974.	1.2	4
60	Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. Journal of Leukocyte Biology, 2002, 71, 597-602.	1.5	302
61	Alternative versus classical macrophage activation during experimental African trypanosomosis. International Journal for Parasitology, 2001, 31, 575-587.	1.3	73
62	Relative Contribution of Interferonâ€Î³ and Interleukinâ€10 to Resistance to Murine African Trypanosomosis. Journal of Infectious Diseases, 2001, 183, 1794-1800.	1.9	116
63	Distinct Carbohydrate Recognition Domains of an Invertebrate Defense Molecule Recognize Gram-negative and Gram-positive Bacteria. Journal of Biological Chemistry, 2001, 276, 45840-45847.	1.6	71
64	Trypanosoma brucei brucei infection impairs MHC class II antigen presentation capacity of macrophages. Parasite Immunology, 2000, 22, 361-370.	0.7	32
65	Antimicrobial defense of the earthworm. Folia Microbiologica, 2000, 45, 283-300.	1.1	62
66	Attenuation ofTrypanosoma bruceils Associated with Reduced Immunosuppression and Concomitant Production of Th2 Lymphokines. Journal of Infectious Diseases, 2000, 181, 1110-1120.	1.9	57
67	Identification of a coelomic mitogenic factor in Eisenia foetida earthworm. Immunology Letters, 1999, 65, 203-211.	1.1	18
68	Convergent evolution of cytokines. Nature, 1999, 400, 627-628.	13.7	71
69	Tumor Necrosis Factor Alpha Is a Key Mediator in the Regulation of Experimental <i>Trypanosoma brucei</i> Infections. Infection and Immunity, 1999, 67, 3128-3132.	1.0	164
70	Cellular expression of the cytolytic factor in earthworms Eisenia foetida. Immunology Letters, 1998, 60, 23-29.	1.1	48
71	Identification and Cloning of a Glucan- and Lipopolysaccharide-binding Protein from Eisenia foetidaEarthworm Involved in the Activation of Prophenoloxidase Cascade. Journal of Biological Chemistry, 1998, 273, 24948-24954.	1.6	158
72	<i>Trypanosoma brucei</i> infection elicits nitric oxide-dependent and nitric oxide-independent suppressive mechanisms. Journal of Leukocyte Biology, 1998, 63, 429-439.	1.5	53

Botta Alain

#	Article	IF	CITATIONS
73	Specific Uptake of Tumor Necrosis Factor-α Is Involved in Growth Control of Trypanosoma brucei. Journal of Cell Biology, 1997, 137, 715-727.	2.3	140
74	E5 2:45 Glucan-binding properties of a cytolytic protein of Eisenia foetida earthworms. Developmental and Comparative Immunology, 1997, 21, 115.	1.0	2
75	Identification of a cytolytic protein in the coelomic fluid of Eisenia foetida earthworms. Immunology Letters, 1995, 45, 123-128.	1.1	82
76	Characterization and Partial Amino Acid Sequencing of a 107-kDa Procollagen I N-Proteinase Purified by Affinity Chromatography on Immobilized Type XIV Collagen. Journal of Biological Chemistry, 1995, 270, 16724-16730.	1.6	78
77	Mycobacterial proliferation in macrophages is prevented by incubation with lymphocytes activatedin vitro with a mycobacterial antigen complex. European Journal of Immunology, 1991, 21, 793-797.	1.6	29