Mikhail Vagin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1666630/publications.pdf

Version: 2024-02-01

93 papers

3,004 citations

172386 29 h-index 51 g-index

96 all docs 96 docs citations

96 times ranked 4362 citing authors

#	Article	IF	CITATIONS
1	Thermoelectric Properties of Solutionâ€Processed nâ€Doped Ladderâ€Type Conducting Polymers. Advanced Materials, 2016, 28, 10764-10771.	11.1	245
2	Complementary Logic Circuits Based on Highâ€Performance nâ€Type Organic Electrochemical Transistors. Advanced Materials, 2018, 30, 1704916.	11.1	206
3	Cholesterol Self-Powered Biosensor. Analytical Chemistry, 2014, 86, 9540-9547.	3.2	149
4	Relationship between Lactate Concentrations in Active Muscle Sweat and Whole Blood. Bulletin of Experimental Biology and Medicine, 2010, 150, 83-85.	0.3	130
5	An ultrasensitive molecularly-imprinted human cardiac troponin sensor. Biosensors and Bioelectronics, 2013, 50, 492-498.	5.3	113
6	Oxygen-induced doping on reduced PEDOT. Journal of Materials Chemistry A, 2017, 5, 4404-4412.	5.2	97
7	Creatinine and urea biosensors based on a novel ammonium ion-selective copper-polyaniline nano-composite. Biosensors and Bioelectronics, 2016, 77, 505-511.	5.3	94
8	Electrocatalytic Currents from Single Enzyme Molecules. Journal of the American Chemical Society, 2016, 138, 2504-2507.	6.6	92
9	Conjugated Polyelectrolyte Blends for Electrochromic and Electrochemical Transistor Devices. Chemistry of Materials, 2015, 27, 6385-6393.	3.2	83
10	MoS <i>_x</i> @NiO Composite Nanostructures: An Advanced Nonprecious Catalyst for Hydrogen Evolution Reaction in Alkaline Media. Advanced Functional Materials, 2019, 29, 1807562.	7.8	83
11	Solâ^'Gel Immobilization of Lactate Oxidase from Organic Solvent: Toward the Advanced Lactate Biosensor. Analytical Chemistry, 2010, 82, 1601-1604.	3.2	72
12	Electrocatalytic Production of Hydrogen Peroxide with Poly(3,4â€ethylenedioxythiophene) Electrodes. Advanced Sustainable Systems, 2019, 3, 1800110.	2.7	69
13	Can Hybrid Na–Air Batteries Outperform Nonaqueous Na–O ₂ Batteries?. Advanced Science, 2020, 7, 1902866.	5.6	68
14	Advanced Electrocatalysts for Hydrogen Evolution Reaction Based on Core–Shell MoS ₂ /TiO ₂ Nanostructures in Acidic and Alkaline Media. ACS Applied Energy Materials, 2019, 2, 2053-2062.	2.5	67
15	Bulk electronic transport impacts on electron transfer at conducting polymer electrode–electrolyte interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11899-11904.	3.3	61
16	Transition metal ion-substituted polyoxometalates entrapped in polypyrrole as an electrochemical sensor for hydrogen peroxide. Analyst, The, 2012, 137, 624-630.	1.7	50
17	Decorating vertically aligned MoS2 nanoflakes with silver nanoparticles for inducing a bifunctional electrocatalyst towards oxygen evolution and oxygen reduction reaction. Nano Energy, 2021, 81, 105664.	8.2	46
18	Poly(3,4-ethylenedioxythiophene)-tosylate (PEDOT-Tos) electrodes in thermogalvanic cells. Journal of Materials Chemistry A, 2017, 5, 19619-19625.	5.2	44

#	Article	IF	Citations
19	Electrochemical investigations of cytochrome P450. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 94-101.	1.1	42
20	Spontaneous and facilitated micelles formation at liquid liquid interface: towards amperometric detection of redox inactive proteins. Electrochemistry Communications, 2003, 5, 329-333.	2.3	40
21	Electroactive biomimetic collagen-silver nanowire composite scaffolds. Nanoscale, 2016, 8, 14146-14155.	2.8	40
22	Electroactivity of redox-inactive proteins at liquid liquid interface. Journal of Electroanalytical Chemistry, 2005, 584, 110-116.	1.9	36
23	Total phenol analysis of weakly supported water using a laccase-based microband biosensor. Analytica Chimica Acta, 2016, 907, 45-53.	2.6	35
24	Scalable Asymmetric Supercapacitors Based on Hybrid Organic/Biopolymer Electrodes. Advanced Sustainable Systems, 2017, 1, 1700054.	2.7	35
25	Organic heterojunction photocathodes for optimized photoelectrochemical hydrogen peroxide production. Journal of Materials Chemistry A, 2018, 6, 24709-24716.	5.2	35
26	Activation of laccase bioelectrocatalysis of O2 reduction to H2O by carbon nanoparticles. Journal of Electroanalytical Chemistry, 2012, 667, 11-18.	1.9	34
27	A 1.76V hybrid Zn-O2 biofuel cell with a fungal laccase-carbon cloth biocathode. Electrochimica Acta, 2012, 62, 218-226.	2.6	33
28	Molecular Oxygen Activation at a Conducting Polymer: Electrochemical Oxygen Reduction Reaction at PEDOT Revisited, a Theoretical Study. Journal of Physical Chemistry C, 2020, 124, 13263-13272.	1.5	32
29	Corrosion protection of steel by electropolymerized lignins. Electrochemistry Communications, 2006, 8, 60-64.	2.3	31
30	Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells. Journal of Materials Chemistry A, 2015, 3, 24349-24357.	5.2	31
31	Redox Switching of Polyoxometalate–Methylene Blue-Based Layer-by-Layer Films. Langmuir, 2012, 28, 5480-5488.	1.6	29
32	Label-Free Detection of DNA Hybridization at a Liquid Liquid Interface. Analytical Chemistry, 2008, 80, 1336-1340.	3.2	28
33	Negativelyâ€Doped Conducting Polymers for Oxygen Reduction Reaction. Advanced Energy Materials, 2021, 11, 2002664.	10.2	28
34	An efficient bifunctional electrocatalyst based on a nickel iron layered double hydroxide functionalized Co ₃ O ₄ core shell structure in alkaline media. Catalysis Science and Technology, 2019, 9, 2879-2887.	2.1	27
35	Surfactant bilayers for the direct electrochemical detection of affinity interactions. Bioelectrochemistry, 2002, 56, 91-93.	2.4	25
36	Pure Nanoscale Morphology Effect Enhancing the Energy Storage Characteristics of Processable Hierarchical Polypyrrole. Langmuir, 2015, 31, 11904-11913.	1.6	24

#	Article	IF	Citations
37	Epitaxial Graphene Sensors Combined with 3D-Printed Microfluidic Chip for Heavy Metals Detection. Sensors, 2019, 19, 2393.	2.1	24
38	Electrochemical hydrogen production on a metal-free polymer. Sustainable Energy and Fuels, 2019, 3, 3387-3398.	2.5	24
39	Fast switching polymeric electrochromics with facile processed water dispersed nanoparticles. Nano Energy, 2018, 47, 123-129.	8.2	23
40	Electrochemical transducers based on surfactant bilayers for the direct detection of affinity interactions. Biosensors and Bioelectronics, 2003, 18, 1031-1037.	5. 3	22
41	Redox, surface and electrocatalytic properties of layer-by-layer films based upon Fe(III)-substituted crown polyoxometalate [P8W48O184Fe16(OH)28(H2O)4]20 Electrochimica Acta, 2014, 134, 450-458.	2.6	22
42	Enhancement of Nitrite and Nitrate Electrocatalytic Reduction through the Employment of Self-Assembled Layers of Nickel- and Copper-Substituted Crown-Type Heteropolyanions. Langmuir, 2015, 31, 2584-2592.	1.6	22
43	Thermodynamics of lon Transfer Across the Liquid Liquid Interface at a Solid Electrode Shielded with a Thin Layer of Organic Solvent. Journal of Physical Chemistry B, 2004, 108, 11591-11595.	1.2	21
44	Water-processable polypyrrole microparticle modules for direct fabrication of hierarchical structured electrochemical interfaces. Electrochimica Acta, 2016, 190, 495-503.	2.6	21
45	Ionâ€Selective Electrocatalysis on Conducting Polymer Electrodes: Improving the Performance of Redox Flow Batteries. Advanced Functional Materials, 2020, 30, 2007009.	7.8	21
46	Interruption of Electrical Conductivity of Titanium Dental Implants Suggests a Path Towards Elimination Of Corrosion. PLoS ONE, 2015, 10, e0140393.	1.1	21
47	Direct detection of ammonium ion by means of oxygen electrocatalysis at a copper-polyaniline composite on a screen-printed electrode. Mikrochimica Acta, 2016, 183, 1981-1987.	2.5	20
48	Nitrate and Nitrite Electrocatalytic Reduction at Layer-by-Layer Films Composed of Dawson-type Heteropolyanions Mono-substituted with Transitional Metal lons and Silver Nanoparticles. Electrochimica Acta, 2015, 184, 323-330.	2.6	18
49	Monitoring of epitaxial graphene anodization. Electrochimica Acta, 2017, 238, 91-98.	2.6	18
50	Lead (Pb) interfacing with epitaxial graphene. Physical Chemistry Chemical Physics, 2018, 20, 17105-17116.	1.3	18
51	Conducting Polymer Electrocatalysts for Protonâ€Coupled Electron Transfer Reactions: Toward Organic Fuel Cells with Forest Fuels. Advanced Sustainable Systems, 2018, 2, 1800021.	2.7	18
52	Organic electrochemical transistors from supramolecular complexes of conjugated polyelectrolyte PEDOTS. Journal of Materials Chemistry C, 2019, 7, 2987-2993.	2.7	18
53	Protein extracting electrodes: Insights in the mechanism. Journal of Electroanalytical Chemistry, 2008, 623, 68-74.	1.9	17
54	Twinning Lignosulfonate with a Conducting Polymer via Counterâ€ion Exchange for Largeâ€Scale Electrical Storage. Advanced Sustainable Systems, 2019, 3, 1900039.	2.7	17

#	Article	IF	CITATIONS
55	Morphology effects on electrocatalysis of anodic water splitting on nickel (II) oxide. Microporous and Mesoporous Materials, 2022, 333, 111734.	2.2	17
56	Unsubstituted phenothiazine as a superior water-insoluble mediator for oxidases. Biosensors and Bioelectronics, 2014, 53, 275-282.	5.3	16
57	Synthesis of new lanthanide naphthalocyanine complexes based on 6,7-bis(phenoxy)-2,3-naphthalodinitrile and their spectral and electrochemical investigation. Russian Chemical Bulletin, 2008, 57, 1912-1919.	0.4	15
58	Electrocatalysis by crown-type polyoxometalates multi-substituted by transition metal ions; Comparative study. Electrochimica Acta, 2015, 176, 1248-1255.	2.6	15
59	Evaluation of the Electrochemically Active Surface Area of Microelectrodes by Capacitive and Faradaic Currents. ChemElectroChem, 2019, 6, 4411-4417.	1.7	15
60	Colloid electrochemistry of conducting polymer: towards potential-induced in-situ drug release. Electrochimica Acta, 2017, 228, 407-412.	2.6	14
61	Doped Conjugated Polymer Enclosing a Redox Polymer: Wiring Polyquinones with Poly(3,4â€Ethylenedioxythiophene). Advanced Energy and Sustainability Research, 2020, 1, 2000027.	2.8	14
62	Electrochemical Deposition of Copper on Epitaxial Graphene. Applied Sciences (Switzerland), 2020, 10, 1405.	1.3	14
63	Arrays of Screenâ€Printed Graphite Microband Electrodes as a Versatile Electroanalysis Platform. ChemElectroChem, 2014, 1, 755-762.	1.7	12
64	Towards eco-friendly redox flow batteries with all bio-sourced cell components. Journal of Energy Storage, 2022, 50, 104352.	3.9	12
65	Self-Assembled Amphiphilic Bilayers of Surfactant Brij-52 on Gold Electrodes. Electroanalysis, 1999, 11, 1094-1097.	1.5	11
66	Understanding Graphene Response to Neutral and Charged Lead Species: Theory and Experiment. Materials, 2018, 11, 2059.	1.3	11
67	Solar Heatâ€Enhanced Energy Conversion in Devices Based on Photosynthetic Membranes and PEDOT:PSSâ€Nanocellulose Electrodes. Advanced Sustainable Systems, 2020, 4, 1900100.	2.7	11
68	The effect of crosslinking on ion transport in nanocellulose-based membranes. Carbohydrate Polymers, 2022, 278, 118938.	5.1	11
69	lon Transport Across Liquid Liquid Interfacial Boundaries Monitored at Generatorâ€Collector Electrodes. Electroanalysis, 2010, 22, 2889-2896.	1.5	10
70	Coupled triple phase boundary processes: Liquid–liquid generator–collector electrodes. Electrochemistry Communications, 2010, 12, 455-458.	2.3	8
71	Correspondence on "Can Nanoimpacts Detect Single-Enzyme Activity? Theoretical Considerations and an Experimental Study of Catalase Impacts― ACS Catalysis, 2017, 7, 3591-3593.	5.5	8
72	Printable Heterostructured Bioelectronic Interfaces with Enhanced Electrode Reaction Kinetics by Intermicroparticle Network. ACS Applied Materials & Samp; Interfaces, 2017, 9, 33368-33376.	4.0	7

#	Article	IF	Citations
73	Polypyrrole entrapped 18-molybdodisulphate anion for the detection of hydrogen peroxide. Electrochimica Acta, 2018, 287, 78-86.	2.6	7
74	Product-to-intermediate relay achieving complete oxygen reduction reaction (cORR) with Prussian blue integrated nanoporous polymer cathode in fuel cells. Nano Energy, 2020, 78, 105125.	8.2	7
75	Investigating the role of polymer size on ionic conductivity in free-standing hyperbranched polyelectrolyte membranes. Polymer, 2021, 223, 123664.	1.8	7
76	Sulfonated Cellulose Membranes Improve the Stability of Aqueous Organic Redox Flow Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	5
77	Redox switching of polyoxometalate-doped polypyrrole films in ionic liquid media. Electrochimica Acta, 2018, 265, 254-258.	2.6	4
78	Oxygen reduction reaction at conducting polymer electrodes in a wider context: Insights from modelling concerning outer and inner sphere mechanisms. Electrochemical Science Advances, 2023, 3, .	1.2	4
79	Bidirectional Hydrogen Electrocatalysis on Epitaxial Graphene. ACS Omega, 2022, 7, 13221-13227.	1.6	4
80	Potentialâ€modulated Electrocapacitive Properties of Soft Microstructured Polypyrrole. Electroanalysis, 2017, 29, 203-207.	1.5	3
81	PEDOTâ€Cellulose Gas Diffusion Electrodes for Disposable Fuel Cells. Advanced Sustainable Systems, 2019, 3, 1900097.	2.7	3
82	Understanding of the Electrochemical Behavior of Lithium at Bilayer-Patched Epitaxial Graphene/4H-SiC. Nanomaterials, 2022, 12, 2229.	1.9	3
83	Bioelectrocatalysis on Anodized Epitaxial Graphene and Conventional Graphitic Interfaces. ChemElectroChem, 2019, 6, 3791-3796.	1.7	2
84	Anodization study of epitaxial graphene: insights on the oxygen evolution reaction of graphitic materials. Nanotechnology, 2019, 30, 285701.	1.3	2
85	Manipulation of epitaxial graphene towards novel properties and applications. Materials Today: Proceedings, 2020, 20, 37-45.	0.9	2
86	Manufacturing Poly(3,4â€Ethylenedioxythiophene) Electrocatalytic Sheets for Largeâ€Scale H 2 O 2 Production. Advanced Sustainable Systems, 0, , 2100316.	2.7	2
87	Drinking Water Analysis Using Electronic Tongues. , 2016, , 255-264.		1
88	Role of cobalt precursors in the synthesis of <scp> Co ₃ O ₄ </scp> hierarchical nanostructures toward the development of cobaltâ€based functional electrocatalysts for bifunctional water splitting in alkaline and acidic media. Journal of the Chinese Chemical Society, 0, , .	0.8	1
89	Liquid Liquid Interface in Noncatalytic Biosensorics. ECS Meeting Abstracts, 2009, , .	0.0	0
90	Direct reagentless detection of the affinity binding of recombinant His-tagged firefly luciferase with a nickel-modified gold electrode. Mendeleev Communications, 2015, 25, 290-292.	0.6	0

#	Article	IF	CITATIONS
91	Functional Microparticles – "LEGO―for Printable Bioelectronics Richard Newell. Procedia Technology, 2017, 27, 3.	1.1	0
92	Collision-based Electrochemistry for Investigation of Direct Electron Transfer of a Single Enzyme Molecule. Procedia Technology, 2017, 27, 238-239.	1.1	0
93	Hydrogen Evolution and Oxygen Reduction Reactions on Conducting Polymers. ECS Meeting Abstracts, 2020, MA2020-02, 3036-3036.	0.0	O