Danuta Joanna Michczynska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/166656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Tree-Ring chronology from AllerÃ,d–YD transition from Koźmin (Central Poland). Geochronometria, 2020, 47, 101-111.	0.8	3
2	Late Glacial Atmospheric Radiocarbon Variations Recorded in Scots Pine (<i>Pinus sylvestris</i> L.) Wood from KwiatkÓw, Central Poland. Radiocarbon, 2018, 60, 1029-1040.	1.8	4
3	Different pretreatment methods for 14C dating of Younger Dryas and AllerÃ,d pine wood (Pinus) Tj ETQq1 1 0.78	34314 rgB ⁻ 1.4	Г /Overlock 1 14
4	Differential proxy responses to late AllerÃ,d and early Younger Dryas climatic change recorded in varved sediments of the Trzechowskie palaeolake in Northern Poland. Quaternary Science Reviews, 2017, 158, 94-106.	3.0	36
5	Kohonen artificial neural networks and the IndVal index as supplementary tools for the quantitative analysis of palaeoecological data. Geochronometria, 2017, 44, 111-111.	0.8	1
6	Reflection of climatic changes during interpleniglacial in the geoecosystems of South-Eastern Poland. Geochronometria, 2017, 44, 202-215.	0.8	8
7	Drought as a stress driver of ecological changes in peatland - A palaeoecological study of peatland development between 3500 BCE and 200 BCE in central Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 461, 272-291.	2.3	43
8	Kohonen Artificial Neural Networks and the IndVal Index as Supplementary Tools for the Quantitative Analysis of Palaeoecological Data. Geochronometria, 2015, 42, .	0.8	6
9	Fluvial history of the Sub-Carpathian Basins (Poland) during the last cold stage (60–8ÂcalÂka BP). Quaternary International, 2015, 388, 119-141.	1.5	16
10	Climatic fluctuations reflected in the evolution of fluvial systems of Central-Eastern Europe (60–8Âka) Tj ETQq	0 0 0 rgBT 1.5	/Qverlock 10
11	Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8Âka. Quaternary Science Reviews, 2014, 106, 206-224.	3.0	188
12	Intimate Selected Remarks Following The Cost Action. Papers on Global Change IGBP, 2014, 21, 63-68.	0.1	0
13	Progress in the holocene chrono-climatostratigraphy of Polish territory. Geochronometria, 2013, 40, 1-21.	0.8	135
14	Radiocarbon Age-Depth Modeling Prevents Misinterpretation of Past Vegetation Dynamics: Case Study of Wierchomla Mire (Polish Outer Carpathians). Radiocarbon, 2013, 55, 1724-1734.	1.8	18
15	Hydrological Changes After the Last Ice Retreat in Northern Poland Using Radiocarbon Dating. Radiocarbon, 2013, 55, 1712-1723.	1.8	17
16	Hydrological Changes after the Last Ice Retreat in Northern Poland Using Radiocarbon Dating. Radiocarbon, 2013, 55, .	1.8	9
17	Radiocarbon Age-Depth Modeling Prevents Misinterpretation of Past Vegetation Dynamics: Case Study Wierchomla Mire (Polish Outer Carpathians). Radiocarbon, 2013, 55, .	1.8	0
18	Frequency Distribution of ¹⁴ C Ages for Chronostratigraphic Reconstructions: Alaska Region Study Case. Radiocarbon, 2010, 52, 1041-1055.	1.8	4

#	Article	IF	CITATIONS
19	Chronology of the Early Pre-Pottery Neolithic Settlement Tell Qaramel, Northern Syria, in the Light of Radiocarbon Dating. Radiocarbon, 2009, 51, 771-781.	1.8	14
20	Frequency Distribution of Radiocarbon Dates as a Tool for Reconstructing Environmental Changes. Radiocarbon, 2007, 49, 799-806.	1.8	47
21	Radiocarbon Chronology of the Ancient Settlement in the Golan Heights Area, Israel. Radiocarbon, 2007, 49, 625-637.	1.8	27
22	Past hydrological events reflected in Holocene history of Polish rivers. Catena, 2006, 66, 24-33.	5.0	178
23	Past hydrological events reflected in the Holocene fluvial record of Europe. Catena, 2006, 66, 145-154.	5.0	289
24	Shape Analysis of Cumulative Probability Density Function of Radiocarbon Dates Set in the Study of Climate Change in the Late Glacial and Holocene. Radiocarbon, 2004, 46, 733-744.	1.8	79
25	Improvement of the Procedure for Probabilistic Calibration of Radiocarbon Dates. Radiocarbon, 1989, 31, 824-832.	1.8	26
26	A Comparison of Methods Used for the Calibration of Radiocarbon Dates. Radiocarbon, 1989, 31, 846-863.	1.8	32