
Shaoliang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1666206/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A simple method for the extraction and identification of light density microplastics from soil. Science of the Total Environment, 2018, 616-617, 1056-1065.	3.9	325
2	Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China. Plant, Soil and Environment, 2010, 56, 87-97.	1.0	254
3	Microplastics in the environment: A review of analytical methods, distribution, and biological effects. TrAC - Trends in Analytical Chemistry, 2019, 111, 62-72.	5.8	251
4	Leaching of microplastics by preferential flow in earthworm (Lumbricus terrestris) burrows. Environmental Chemistry, 2019, 16, 31.	0.7	116
5	Soil erosion control practices in Northeast China: A mini-review. Soil and Tillage Research, 2011, 117, 44-48.	2.6	110
6	Non-biodegradable microplastics in soils: A brief review and challenge. Journal of Hazardous Materials, 2021, 409, 124525.	6.5	110
7	Distribution of low-density microplastics in the mollisol farmlands of northeast China. Science of the Total Environment, 2020, 708, 135091.	3.9	103
8	Influence of topography and land management on soil nutrients variability in Northeast China. Nutrient Cycling in Agroecosystems, 2011, 89, 427-438.	1.1	84
9	Simultaneous nitrification and denitrification by EPSs in aerobic granular sludge enhanced nitrogen removal of ammonium-nitrogen-rich wastewater. Bioresource Technology, 2016, 202, 101-106.	4.8	79
10	Comparing interpolation methods to predict soil total phosphorus in the Mollisol area of Northeast China. Catena, 2019, 174, 59-72.	2.2	66
11	Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available phosphorus and total phosphorus. Journal of Soils and Sediments, 2014, 14, 1775-1789.	1.5	56
12	Differentiating the early impacts of topsoil removal and soil amendments on crop performance/productivity of corn and soybean in eroded farmland of Chinese Mollisols. Field Crops Research, 2009, 111, 276-283.	2.3	48
13	Fertilization accelerates the decomposition of microplastics in mollisols. Science of the Total Environment, 2020, 722, 137950.	3.9	39
14	Spatial Heterogeneity of Soil C:N Ratio in a Mollisol Watershed of Northeast China. Land Degradation and Development, 2016, 27, 295-304.	1.8	35
15	Spatial heterogeneity of soil organic matter and soil total nitrogen in a Mollisol watershed of Northeast China. Environmental Earth Sciences, 2014, 72, 275-288.	1.3	29
16	Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available potassium. Nutrient Cycling in Agroecosystems, 2013, 95, 319-331.	1.1	24
17	Soil Loss, Crop Growth, and Economic Margins under Different Management Systems on a Sloping Field in the Black Soil Area of Northeast China. Agroecology and Sustainable Food Systems, 2011, 35, 293-311.	0.9	23
18	Spatiotemporal Heterogeneity of Soil Available Nitrogen During Crop Growth Stages on Mollisol Slopes of Northeast China. Land Degradation and Development, 2017, 28, 856-869.	1.8	23

SHAOLIANG ZHANG

#	Article	IF	CITATIONS
19	Quantitative studies of gully slope erosion and soil physiochemical properties during freeze-thaw cycling in a Mollisol region. Science of the Total Environment, 2020, 707, 136191.	3.9	23
20	Soil nutrient variance by slope position in a Mollisol farmland area of Northeast China. Chinese Geographical Science, 2016, 26, 508-517.	1.2	18
21	Responses of soil total phosphorus to freeze and thaw cycles in a Mollisol watershed. Geoderma, 2020, 376, 114571.	2.3	17
22	Influence of Straw Amendment on Soil Physicochemical Properties and Crop Yield on a Consecutive Mollisol Slope in Northeastern China. Water (Switzerland), 2018, 10, 559.	1.2	16
23	Freeze-thaw cycles changes soil nitrogen in a Mollisol sloping field in Northeast China. Nutrient Cycling in Agroecosystems, 2020, 116, 345-364.	1.1	12
24	Effects of freeze-thaw cycles on the spatial distribution of soil total nitrogen using a geographically weighted regression kriging method. Science of the Total Environment, 2021, 763, 142993.	3.9	11
25	Key factors influencing on vegetation restoration in the gullies of the Mollisols. Journal of Environmental Management, 2021, 299, 113704.	3.8	8
26	Key factors determining soil organic carbon changes after freeze-thaw cycles in a watershed located in northeast China. Science of the Total Environment, 2022, 828, 154525.	3.9	8
27	Heterogeneity of soil nutrients in ecosystems: a review of methodology, variability and impact factors. Journal of Environmental & Earth Sciences, 2019, 1, .	0.4	1
28	Topography and Land Management Change the Heterogeneity of Soil Available Nitrogen in a Mollisol Watershed of Northeastern China. Eurasian Soil Science, 2022, 55, 200-211.	0.5	1
29	An Integrative Database System of Agro-Ecology for the Black Soil Region of China. Data Science Journal, 2007, 6, S867-S878.	0.6	0
30	Crops Change the Morphology, Abundance, and Mass of Microplastics in Mollisols of Northeast China. Frontiers in Microbiology, 2022, 13, 733804.	1.5	0