Juan Luis GonzÃ;lez-Santander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/166612/publications.pdf

Version: 2024-02-01

1040056 794594 51 395 9 19 citations h-index g-index papers 52 52 52 307 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A Note on Some Reduction Formulas for the Incomplete Beta Function and the Lerch Transcendent. Mathematics, 2021, 9, 1486.	2.2	2
2	The Integral Mittag-Leffler, Whittaker and Wright Functions. Mathematics, 2021, 9, 3255.	2.2	8
3	Cálculo de la flecha en la lemniscata de Bernoulli. Aplicación a curvas de transferencia ferroviarias. Nereis, 2020, , 185-193.	0.1	0
4	Hypergeometric distribution of the number of draws from an urn with two types of items before one of the counts reaches a threshold. Turkish Journal of Mathematics, 2020, 44, 1881-1898.	0.7	0
5	Asymptotic expansions for the ground heat transfer due to a borehole heat exchanger with a Neumann boundary condition. Journal of Engineering Mathematics, 2019, 117, 47-64.	1.2	4
6	A note on the order derivatives of Kelvin functions. Results in Mathematics, 2019, 74, 1.	0.8	0
7	Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile. Journal of Engineering Mathematics, 2019, 116, 101-122.	1.2	5
8	Depth of thermal penetration in straight grinding. International Journal of Advanced Manufacturing Technology, 2018, 96, 3175-3190.	3.0	4
9	Surface derivative method for inverse thermal analysis in dry grinding. Journal of Engineering Mathematics, 2018, 112, 137-155.	1.2	0
10	Closed-form expressions for derivatives of Bessel functions with respect to the order. Journal of Mathematical Analysis and Applications, 2018, 466, 1060-1081.	1.0	9
11	A Note on Some Reduction Formulas for the Generalized Hypergeometric Function $\$ _{2}F_{2}\$\$ 2 F 2 and Kampé de Fériet Function. Results in Mathematics, 2017, 71, 949-954.	0.8	1
12	Series expansion and asymptotic formulas for heat transfer of an inclined moving heat source. Journal of Engineering Mathematics, 2017, 103, 111-126.	1.2	2
13	Efficient Series Expansions of the Temperature Field in Dry Surface Grinding for Usual Heat Flux Profiles. Mathematical Problems in Engineering, 2017, 2017, 1-13.	1.1	4
14	New Integrals Arising in the Samara-Valencia Heat Transfer Model in Grinding. Journal of Applied Mathematics, 2017, 2017, 1-5.	0.9	0
15	A problem regarding buoyancy of simple figures suitable for Problem-Based Learning. Revista Brasileira De Ensino De Fisica, 2017, 39, .	0.2	0
16	Maximum Temperature in Dry Surface Grinding for High Peclet Number and Arbitrary Heat Flux Profile. Mathematical Problems in Engineering, 2016, 2016, 1-9.	1.1	5
17	Maximum Temperature and Relaxation Time in Wet Surface Grinding for a General Heat Flux Profile. Mathematical Problems in Engineering, 2016, 2016, 1-14.	1.1	1
18	Calculation of some integrals involving the Macdonald function by using Fourier transform. Journal of Mathematical Analysis and Applications, 2016, 441, 349-363.	1.0	3

#	Article	IF	Citations
19	A useful analytical formula to avoid thermal damage in the adaptive control of dry surface grinding. International Journal of Mechanical Sciences, 2016, 117, 152-161.	6.7	9
20	Analytic solution for maximum temperature during cut in and cut out in surface dry grinding. Applied Mathematical Modelling, 2016, 40, 2356-2367.	4.2	10
21	Calculation of Some Integrals Arising in the Samara-Valencia Solution for Dry Flat Grinding. Mathematical Problems in Engineering, 2015, 2015, 1-7.	1.1	3
22	A Theorem for Finding Maximum Temperature in Wet Grinding. Mathematical Problems in Engineering, 2015, 2015, 1-13.	1.1	5
23	New analytical approximations for the liquid rise in a capillary tube. Fluid Dynamics Research, 2015, 47, 025505.	1.3	2
24	An analysis of the transient regime temperature field in wet grinding. Journal of Engineering Mathematics, 2015, 90, 141-171.	1.2	8
25	Closed form expression for the surface temperature in wet grinding: application to maximum temperature evaluation. Journal of Engineering Mathematics, 2015, 90, 173-193.	1.2	5
26	Some Remarks on the Self-Exponential Function: Minimum Value, Inverse Function, and Indefinite Integral. International Journal of Analysis, 2014, 2014, 1-7.	0.5	0
27	A note on some relation formulae involving Bessel functions. Integral Transforms and Special Functions, 2014, 25, 992-997.	1.2	0
28	Calculation of an integral arising in dry flat grinding for a general heat flux profile. Application to maximum temperature evaluation. Journal of Engineering Mathematics, 2014, 88, 137-160.	1.2	9
29	Relative distance between two scalar fields. Application to mathematical modelling approximation. Mathematical Methods in the Applied Sciences, 2014, 37, 2906-2922.	2.3	7
30	Classification of flavonoid compounds by using entropy of information theory. Phytochemistry, 2013, 93, 182-191.	2.9	39
31	EMERGENT QUANTUM MECHANICS AS A CLASSICAL, IRREVERSIBLE THERMODYNAMICS. International Journal of Geometric Methods in Modern Physics, 2013, 10, 1350007.	2.0	13
32	Determination of the kinematic viscosity by the liquid rise in a capillary tube. Revista Brasileira De Ensino De Fisica, 2013, 35, .	0.2	2
33	AN ENTROPIC PICTURE OF EMERGENT QUANTUM MECHANICS. International Journal of Geometric Methods in Modern Physics, 2012, 09, 1250048.	2.0	18
34	A holographic map of action onto entropy. Journal of Physics: Conference Series, 2012, 361, 012027.	0.4	4
35	Remarks on the Representation Theory of the Moyal Plane. Advances in Mathematical Physics, 2011, 2011, 1-9.	0.8	0
36	Perturbation analysis of the heat transfer in porous media with small thermal conductivity. Journal of Mathematical Analysis and Applications, 2011, 374, 57-70.	1.0	9

#	Article	IF	CITATIONS
37	ON THE NONCOMMUTATIVE EIKONAL. International Journal of Geometric Methods in Modern Physics, 2011, 08, 621-638.	2.0	4
38	Exact Solution for the Time-Dependent Temperature Field in Dry Grinding: Application to Segmental Wheels. Mathematical Problems in Engineering, 2011, 2011, 1-28.	1.1	11
39	An analysis of the temperature field of the workpiece in dry continuous grinding. Journal of Engineering Mathematics, 2010, 67, 165-174.	1.2	10
40	Calculation of Some Integrals Arising in Heat Transfer in Geothermics. Mathematical Problems in Engineering, 2010, 2010, 1-13.	1.1	1
41	Calculation of Some Integrals Arising in Heat Transfer in Grinding. Mathematical Problems in Engineering, 2010, 2010, 1-14.	1.1	2
42	Positive Curvature Can Mimic a Quantum. , 2010, , .		1
43	A NOTE ON THE QUANTUM-MECHANICAL RICCI FLOW. International Journal of Modern Physics A, 2009, 24, 4999-5006.	1.5	2
44	A MECHANICS FOR THE RICCI FLOW. International Journal of Geometric Methods in Modern Physics, 2009, 06, 759-767.	2.0	7
45	RICCI FLOW, QUANTUM MECHANICS AND GRAVITY. International Journal of Geometric Methods in Modern Physics, 2009, 06, 505-512.	2.0	3
46	Finite line-source model for borehole heat exchangers: effect of vertical temperature variations. Geothermics, 2009, 38, 263-270.	3.4	156
47	On the Ricci flow and emergent quantum mechanics. Journal of Physics: Conference Series, 2009, 174, 012033.	0.4	1
48	Heat transfer between a gas and an ultralow thermal conductivity porous structure. Applied Mathematics and Computation, 2008, 204, 687-693.	2.2	3
49	A NOTE ON THE QUANTUM OF TIME. Modern Physics Letters A, 2008, 23, 1161-1165.	1.2	2
50	Line ratio values for spectral calibration in the vacuum ultraviolet by using laser produced plasmas. Journal of Quantitative Spectroscopy and Radiative Transfer, 1997, 57, 459-466.	2.3	1
51	A problem-based learning proposal to teach numerical and analytical nonlinear root searching methods. International Journal of Mathematical Education in Science and Technology, 0, , 1-14.	1.4	O