## Juan Luis GonzÃ;lez-Santander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/166612/publications.pdf Version: 2024-02-01



Juan Luis

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Finite line-source model for borehole heat exchangers: effect of vertical temperature variations.<br>Geothermics, 2009, 38, 263-270.                                                           | 3.4 | 156       |
| 2  | Classification of flavonoid compounds by using entropy of information theory. Phytochemistry, 2013, 93, 182-191.                                                                               | 2.9 | 39        |
| 3  | AN ENTROPIC PICTURE OF EMERGENT QUANTUM MECHANICS. International Journal of Geometric Methods in Modern Physics, 2012, 09, 1250048.                                                            | 2.0 | 18        |
| 4  | EMERGENT QUANTUM MECHANICS AS A CLASSICAL, IRREVERSIBLE THERMODYNAMICS. International Journal of Geometric Methods in Modern Physics, 2013, 10, 1350007.                                       | 2.0 | 13        |
| 5  | Exact Solution for the Time-Dependent Temperature Field in Dry Grinding: Application to Segmental<br>Wheels. Mathematical Problems in Engineering, 2011, 2011, 1-28.                           | 1.1 | 11        |
| 6  | An analysis of the temperature field of the workpiece in dry continuous grinding. Journal of<br>Engineering Mathematics, 2010, 67, 165-174.                                                    | 1.2 | 10        |
| 7  | Analytic solution for maximum temperature during cut in and cut out in surface dry grinding. Applied<br>Mathematical Modelling, 2016, 40, 2356-2367.                                           | 4.2 | 10        |
| 8  | Perturbation analysis of the heat transfer in porous media with small thermal conductivity. Journal of Mathematical Analysis and Applications, 2011, 374, 57-70.                               | 1.0 | 9         |
| 9  | Calculation of an integral arising in dry flat grinding for a general heat flux profile. Application to maximum temperature evaluation. Journal of Engineering Mathematics, 2014, 88, 137-160. | 1.2 | 9         |
| 10 | A useful analytical formula to avoid thermal damage in the adaptive control of dry surface grinding.<br>International Journal of Mechanical Sciences, 2016, 117, 152-161.                      | 6.7 | 9         |
| 11 | Closed-form expressions for derivatives of Bessel functions with respect to the order. Journal of<br>Mathematical Analysis and Applications, 2018, 466, 1060-1081.                             | 1.0 | 9         |
| 12 | An analysis of the transient regime temperature field in wet grinding. Journal of Engineering<br>Mathematics, 2015, 90, 141-171.                                                               | 1.2 | 8         |
| 13 | The Integral Mittag-Leffler, Whittaker and Wright Functions. Mathematics, 2021, 9, 3255.                                                                                                       | 2.2 | 8         |
| 14 | A MECHANICS FOR THE RICCI FLOW. International Journal of Geometric Methods in Modern Physics, 2009, 06, 759-767.                                                                               | 2.0 | 7         |
| 15 | Relative distance between two scalar fields. Application to mathematical modelling approximation.<br>Mathematical Methods in the Applied Sciences, 2014, 37, 2906-2922.                        | 2.3 | 7         |
| 16 | A Theorem for Finding Maximum Temperature in Wet Grinding. Mathematical Problems in Engineering,<br>2015, 2015, 1-13.                                                                          | 1.1 | 5         |
| 17 | Closed form expression for the surface temperature in wet grinding: application to maximum temperature evaluation. Journal of Engineering Mathematics, 2015, 90, 173-193.                      | 1.2 | 5         |
| 18 | Maximum Temperature in Dry Surface Grinding for High Peclet Number and Arbitrary Heat Flux Profile.<br>Mathematical Problems in Engineering, 2016, 2016, 1-9.                                  | 1.1 | 5         |

Juan Luis

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Efficient temperature field evaluation in wet surface grinding for arbitrary heat flux profile. Journal of Engineering Mathematics, 2019, 116, 101-122.                                  | 1.2 | 5         |
| 20 | ON THE NONCOMMUTATIVE EIKONAL. International Journal of Geometric Methods in Modern Physics, 2011, 08, 621-638.                                                                          | 2.0 | 4         |
| 21 | A holographic map of action onto entropy. Journal of Physics: Conference Series, 2012, 361, 012027.                                                                                      | 0.4 | 4         |
| 22 | Efficient Series Expansions of the Temperature Field in Dry Surface Grinding for Usual Heat Flux<br>Profiles. Mathematical Problems in Engineering, 2017, 2017, 1-13.                    | 1.1 | 4         |
| 23 | Depth of thermal penetration in straight grinding. International Journal of Advanced Manufacturing<br>Technology, 2018, 96, 3175-3190.                                                   | 3.0 | 4         |
| 24 | Asymptotic expansions for the ground heat transfer due to a borehole heat exchanger with a Neumann boundary condition. Journal of Engineering Mathematics, 2019, 117, 47-64.             | 1.2 | 4         |
| 25 | Heat transfer between a gas and an ultralow thermal conductivity porous structure. Applied Mathematics and Computation, 2008, 204, 687-693.                                              | 2.2 | 3         |
| 26 | RICCI FLOW, QUANTUM MECHANICS AND GRAVITY. International Journal of Geometric Methods in Modern Physics, 2009, 06, 505-512.                                                              | 2.0 | 3         |
| 27 | Calculation of Some Integrals Arising in the Samara-Valencia Solution for Dry Flat Grinding.<br>Mathematical Problems in Engineering, 2015, 2015, 1-7.                                   | 1.1 | 3         |
| 28 | Calculation of some integrals involving the Macdonald function by using Fourier transform. Journal of Mathematical Analysis and Applications, 2016, 441, 349-363.                        | 1.0 | 3         |
| 29 | A NOTE ON THE QUANTUM OF TIME. Modern Physics Letters A, 2008, 23, 1161-1165.                                                                                                            | 1.2 | 2         |
| 30 | A NOTE ON THE QUANTUM-MECHANICAL RICCI FLOW. International Journal of Modern Physics A, 2009, 24, 4999-5006.                                                                             | 1.5 | 2         |
| 31 | Calculation of Some Integrals Arising in Heat Transfer in Grinding. Mathematical Problems in Engineering, 2010, 2010, 1-14.                                                              | 1.1 | 2         |
| 32 | Determination of the kinematic viscosity by the liquid rise in a capillary tube. Revista Brasileira De<br>Ensino De Fisica, 2013, 35, .                                                  | 0.2 | 2         |
| 33 | New analytical approximations for the liquid rise in a capillary tube. Fluid Dynamics Research, 2015, 47, 025505.                                                                        | 1.3 | 2         |
| 34 | Series expansion and asymptotic formulas for heat transfer of an inclined moving heat source.<br>Journal of Engineering Mathematics, 2017, 103, 111-126.                                 | 1.2 | 2         |
| 35 | A Note on Some Reduction Formulas for the Incomplete Beta Function and the Lerch Transcendent.<br>Mathematics, 2021, 9, 1486.                                                            | 2.2 | 2         |
| 36 | Line ratio values for spectral calibration in the vacuum ultraviolet by using laser produced plasmas.<br>Journal of Quantitative Spectroscopy and Radiative Transfer, 1997, 57, 459-466. | 2.3 | 1         |

Juan Luis

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | On the Ricci flow and emergent quantum mechanics. Journal of Physics: Conference Series, 2009, 174, 012033.                                                                                 | 0.4 | 1         |
| 38 | Calculation of Some Integrals Arising in Heat Transfer in Geothermics. Mathematical Problems in Engineering, 2010, 2010, 1-13.                                                              | 1.1 | 1         |
| 39 | Positive Curvature Can Mimic a Quantum. , 2010, , .                                                                                                                                         |     | 1         |
| 40 | Maximum Temperature and Relaxation Time in Wet Surface Grinding for a General Heat Flux Profile.<br>Mathematical Problems in Engineering, 2016, 2016, 1-14.                                 | 1.1 | 1         |
| 41 | A Note on Some Reduction Formulas for the Generalized Hypergeometric Function \$\$_{2}F_{2}\$\$ 2 F 2 and Kampé de Fériet Function. Results in Mathematics, 2017, 71, 949-954.              | 0.8 | 1         |
| 42 | Remarks on the Representation Theory of the Moyal Plane. Advances in Mathematical Physics, 2011, 2011, 1-9.                                                                                 | 0.8 | 0         |
| 43 | Some Remarks on the Self-Exponential Function: Minimum Value, Inverse Function, and Indefinite<br>Integral. International Journal of Analysis, 2014, 2014, 1-7.                             | 0.5 | Ο         |
| 44 | A note on some relation formulae involving Bessel functions. Integral Transforms and Special Functions, 2014, 25, 992-997.                                                                  | 1.2 | 0         |
| 45 | New Integrals Arising in the Samara-Valencia Heat Transfer Model in Grinding. Journal of Applied<br>Mathematics, 2017, 2017, 1-5.                                                           | 0.9 | Ο         |
| 46 | A problem regarding buoyancy of simple figures suitable for Problem-Based Learning. Revista<br>Brasileira De Ensino De Fisica, 2017, 39, .                                                  | 0.2 | 0         |
| 47 | Surface derivative method for inverse thermal analysis in dry grinding. Journal of Engineering<br>Mathematics, 2018, 112, 137-155.                                                          | 1.2 | Ο         |
| 48 | A note on the order derivatives of Kelvin functions. Results in Mathematics, 2019, 74, 1.                                                                                                   | 0.8 | 0         |
| 49 | A problem-based learning proposal to teach numerical and analytical nonlinear root searching methods. International Journal of Mathematical Education in Science and Technology, 0, , 1-14. | 1.4 | Ο         |
| 50 | Cálculo de la flecha en la lemniscata de Bernoulli. Aplicación a curvas de transferencia ferroviarias.<br>Nereis, 2020, , 185-193.                                                          | 0.1 | 0         |
| 51 | Hypergeometric distribution of the number of draws from an urn with two types of items before one of the counts reaches a threshold. Turkish Journal of Mathematics, 2020, 44, 1881-1898.   | 0.7 | О         |