
Gabriel Abarca Anjari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1666071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanistic Insights into the Thermal Decomposition of Ammonium Perchlorate: The Role of Amino-Functionalized Magnetic Nanoparticles. Inorganic Chemistry, 2022, 61, 1447-1455.	4.0	22
2	Triazoliumâ€based Ionic Liquids Supported on Alumina as Catalysts to Produce 5â€HMF from Fructose. ChemCatChem, 2022, 14, .	3.7	6
3	Bimetallic ruthenium compound derived from 6,12-dihydroindeno[1,2-b]fluorene ligand as burning rate catalyst for solid rocket motor propellant. Journal of Organometallic Chemistry, 2022, 973-974, 122408.	1.8	1
4	Heterobimetallic Catalysts for the Thermal Decomposition of Ammonium Perchlorate: Efficient Burning Rate Catalysts for Solid Rocket Motors and Missiles. Inorganic Chemistry, 2021, 60, 1436-1448.	4.0	27
5	Bimetallic RuPd nanoparticles in ionic liquids: selective catalysts for the hydrogenation of aromatic compounds. New Journal of Chemistry, 2021, 45, 98-103.	2.8	8
6	Insights into the electronic structure of Fe penta-coordinated complexes. Spectroscopic examination and electrochemical analysis for the oxygen reduction and oxygen evolution reactions. Journal of Materials Chemistry A, 2021, 9, 23802-23816.	10.3	27
7	Oxygen reduction reaction on a 68-atom-gold cluster supported on carbon nanotubes: theoretical and experimental analysis. Materials Chemistry Frontiers, 2021, 5, 7529-7539.	5.9	6
8	Influence iron-iron distance on the thermal decomposition of ammonium perchlorate. New catalysts for the highly efficient combustion of solid rocket propellant. Journal of Organometallic Chemistry, 2020, 905, 121020.	1.8	34
9	Influence of cyano substituents on the electron density and catalytic activity towards the oxygen reduction reaction for iron phthalocyanine. The case for Fe(II) 2,3,9,10,16,17,23,24-octa(cyano)phthalocyanine. Electrochemistry Communications, 2020, 118, 106784.	4.7	20
10	Data of interaction of supported ionic liquids phases onto copper nanoparticles: A density functional theory study. Data in Brief, 2020, 33, 106562.	1.0	1
11	Nanohybrids of reduced graphene oxide and cobalt hydroxide (Co(OH) ₂ rGO) for the thermal decomposition of ammonium perchlorate. RSC Advances, 2020, 10, 23165-23172.	3.6	19
12	Interaction of supported ionic liquids phases onto copper nanoparticles: A DFT study. Journal of Molecular Liquids, 2020, 310, 113089.	4.9	11
13	Highly modulated supported triazolium-based ionic liquids: direct control of the electronic environment on Cu nanoparticles. Nanoscale Advances, 2020, 2, 1325-1332.	4.6	4
14	Novel <i>in situ</i> synthesis of copper nanoparticles supported on reduced graphene oxide and its application as a new catalyst for the decomposition of composite solid propellants. RSC Advances, 2019, 9, 8480-8489.	3.6	29
15	In search of the most active MN4 catalyst for the oxygen reduction reaction. The case of perfluorinated Fe phthalocyanine. Journal of Materials Chemistry A, 2019, 7, 24776-24783.	10.3	52
16	Advanced Surface Characterization Techniques in Nano- and Biomaterials. , 2019, , 35-55.		0
17	Tuning the structure and magnetic behavior of Ni–Ir-based nanoparticles in ionic liquids. Physical Chemistry Chemical Physics, 2018, 20, 10247-10257.	2.8	8
18	Imprinted Naked Pt Nanoparticles on Nâ€Đoped Carbon Supports: A Synergistic Effect between Catalyst and Support. Chemistry - A European Journal, 2018, 24, 1365-1372.	3.3	17

#	Article	IF	CITATIONS
19	Structural, electronic and catalytic properties of palladium nanoparticles supported on poly(ionic) Tj ETQq1 1 0.7	84314 rgE 4.3	BT ₅ Overloc
20	Building Pyridinium Molecular Wires as Axial Ligands for Tuning the Electrocatalytic Activity of Iron Phthalocyanines for the Oxygen Reduction Reaction. ACS Catalysis, 2018, 8, 8406-8419.	11.2	57
21	Hierarchically structured polymeric ionic liquids and polyvinylpyrrolidone mat-fibers fabricated by electrospinning. Journal of Materials Chemistry A, 2017, 5, 9733-9744.	10.3	18
22	Sputtering deposition of gold nanoparticles onto graphene oxide functionalized with ionic liquids: biosensor materials for cholesterol detection. Journal of Materials Chemistry B, 2017, 5, 9482-9486.	5.8	28
23	"Save money―during hydrogenation reactions by exploiting the superior performance of Pd-NPs deposited on carbon black by magnetron sputtering. Tetrahedron, 2017, 73, 5593-5598.	1.9	8
24	Challenging Thermodynamics: Hydrogenation of Benzene to 1,3 yclohexadiene by Ru@Pt Nanoparticles. ChemCatChem, 2017, 9, 204-211.	3.7	30
25	Methoxycarbonylation of Styrene Using a New Type of Palladium Complexes Bearing P,N-donor Ligands as Catalysts. Catalysis Letters, 2015, 145, 1396-1402.	2.6	13
26	Methoxycarbonylation of olefins catalyzed by palladium(II) complexes containing naphthyl(diphenyl)phosphine ligands. Applied Organometallic Chemistry, 2014, 28, 364-371.	3.5	22
27	Ruthenium carbonyl compounds containing polypyridine ligands as catalysts in the reaction of N-benzylideneaniline hydrogenation. Inorganic Chemistry Communication, 2012, 22, 146-148.	3.9	14
28	Synthesis, structure and catalytic activities for hydrogen transfer reaction of the carbonyl ruthenium(II) complex containing polypyridine and phosphine ligands. Inorganic Chemistry Communication, 2010, 13, 1519-1521.	3.9	6
29	Catalytic Effects of Ruthenocene Bimetallic Compounds Derived from Fused Aromatic Ring Ligands on the Main Oxidizing Agent for Solid Rocket Motor. Journal of the Brazilian Chemical Society. 0	0.6	1