Hong He

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1665865/hong-he-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

496 23,470 132 79 h-index g-index citations papers 8.2 28,303 7.48 542 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
496	CeO2 doping boosted low-temperature NH3-SCR activity of FeTiOx catalyst: A microstructure analysis and reaction mechanistic study. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	1
495	One-pot synthesis of hierarchical MnCu-SSZ-13 catalyst with excellent NH3-SCR activity at low temperatures. <i>Microporous and Mesoporous Materials</i> , 2022 , 333, 111720	5.3	2
494	N-nitration of secondary aliphatic amines in the particle phase <i>Chemosphere</i> , 2022 , 133639	8.4	2
493	A simple strategy to tune \(\text{\text{MnO2}}\) and enhance VOC oxidation via precipitation rate control. \(Applied Surface Science, \textbf{2022}, 576, 151823\)	6.7	3
492	Application of smog chambers in atmospheric process studies <i>National Science Review</i> , 2022 , 9, nwab1	0<u>3</u>6.8	3
491	Influence of NO on the activity of Pd/EAlO catalyst for methane oxidation: Alleviation of transient deactivation <i>Journal of Environmental Sciences</i> , 2022 , 112, 38-47	6.4	3
490	Annual nonmethane hydrocarbon trends in Beijing from 2000 to 2019 <i>Journal of Environmental Sciences</i> , 2022 , 112, 210-217	6.4	3
489	Distinct photocatalytic charges separation pathway on CuOx modified rutile and anatase TiO2 under visible light. <i>Applied Catalysis B: Environmental</i> , 2022 , 300, 120735	21.8	1
488	Dynamic Change of Active Sites of Supported Vanadia Catalysts for Selective Catalytic Reduction of Nitrogen Oxides <i>Environmental Science & Environmental Science & Environm</i>	10.3	3
487	Low-Temperature SCR Catalyst Development and Industrial Applications in China. <i>Catalysts</i> , 2022 , 12, 341	4	2
486	Developing a thermally stable Co/Ce-Sn catalyst via adding Sn for soot and CO oxidation <i>IScience</i> , 2022 , 25, 104103	6.1	1
485	Dramatic decrease of secondary organic aerosol formation potential in Beijing: Important contribution from reduction of coal combustion emission <i>Science of the Total Environment</i> , 2022 , 1550	4 ^{10.2}	O
484	Mesoporous LaCoO perovskite oxide with high catalytic performance for NO storage and reduction <i>Journal of Hazardous Materials</i> , 2022 , 431, 128528	12.8	2
483	Promotion Effect of the Keggin Structure on the Sulfur and Water Resistance of Pt/CeTi Catalysts for CO Oxidation. <i>Catalysts</i> , 2022 , 12, 4	4	1
482	Influence of photochemical loss of volatile organic compounds on understanding ozone formation mechanism. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 4841-4851	6.8	1
481	Unravelling the Mechanism of Intermediate-Temperature CO Interaction with Molten-NaNO -Salt-Promoted MgO. <i>Advanced Materials</i> , 2021 , e2106677	24	3
480	Boosting the Dispersity of Metallic Ag Nanoparticles and Ozone Decomposition Performance of Ag-Mn Catalysts via Manganese Vacancy-Dependent Metal-Support Interactions. <i>Environmental Science & Camp; Technology</i> , 2021 , 55, 16143-16152	10.3	1

(2021-2021)

479	Reaction Pathways of Standard and Fast Selective Catalytic Reduction over Cu-SSZ-39. Environmental Science & Environmental Sc	10.3	2
478	Molecular Composition of Oxygenated Organic Molecules and Their Contributions to Organic Aerosol in Beijing. <i>Environmental Science & Environmental Sc</i>	10.3	3
477	Coordinated control of fine-particle and ozone pollution by the substantial reduction of nitrogen oxides. <i>Engineering</i> , 2021 ,	9.7	2
476	Improving the representation of HONO chemistry in CMAQ and examining its impact on haze over China. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 15809-15826	6.8	4
475	Photochemical Aging of Atmospheric Fine Particles as a Potential Source for Gas-Phase Hydrogen Peroxide. <i>Environmental Science & Environmental Scienc</i>	10.3	2
474	Secondary Organic Aerosol Formation Potential from Ambient Air in Beijing: Effects of Atmospheric Oxidation Capacity at Different Pollution Levels. <i>Environmental Science & Environmental Science & Technology</i> , 2021 , 55, 4565-4572	10.3	8
473	Terminal Hydroxyl Groups on AlO Supports Influence the Valence State and Dispersity of Ag Nanoparticles: Implications for Ozone Decomposition. <i>ACS Omega</i> , 2021 , 6, 10715-10722	3.9	1
472	Superior Oxidative Dehydrogenation Performance toward NH Determines the Excellent Low-Temperature NH-SCR Activity of Mn-Based Catalysts. <i>Environmental Science & amp; Technology</i> , 2021 , 55, 6995-7003	10.3	16
471	Role of silver species in H2-NH3-SCR of NOx over Ag/Al2O3 catalysts: Operando spectroscopy and DFT calculations. <i>Journal of Catalysis</i> , 2021 , 395, 1-9	7.3	8
470	The Synergistic Role of Sulfuric Acid, Bases, and Oxidized Organics Governing New-Particle Formation in Beijing. <i>Geophysical Research Letters</i> , 2021 , 48, e2020GL091944	4.9	23
469	Unraveling the Mechanism of Ammonia Selective Catalytic Oxidation on Ag/Al2O3 Catalysts by Operando Spectroscopy. <i>ACS Catalysis</i> , 2021 , 11, 5506-5516	13.1	10
468	Investigation into the Enhanced Catalytic Oxidation of o-Xylene over MOF-Derived Co3O4 with Different Shapes: The Role of Surface Twofold-Coordinate Lattice Oxygen (O2f). <i>ACS Catalysis</i> , 2021 , 11, 6614-6625	13.1	16
467	Increased primary and secondary H₂SO₄ showing the opposing roles in secondary organic aerosol formation from ethyl methacrylate ozonolysis. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 7099-7112	6.8	
466	Cesium as a dual function promoter in Co/Ce-Sn catalyst for soot oxidation. <i>Applied Catalysis B: Environmental</i> , 2021 , 285, 119850	21.8	10
465	Reaction Pathways of the Selective Catalytic Reduction of NO with NH on the FeO(012) Surface: a Combined Experimental and DFT Study. <i>Environmental Science & Experimental Science & Ex</i>	10.3	7
464	Significant contribution of spring northwest transport to volatile organic compounds in Beijing. Journal of Environmental Sciences, 2021 , 104, 169-181	6.4	5
463	Comprehensive Study about the Photolysis of Nitrates on Mineral Oxides. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	9
462	Effect of relative humidity on SOA formation from aromatic hydrocarbons: Implications from the evolution of gas- and particle-phase species. <i>Science of the Total Environment</i> , 2021 , 773, 145015	10.2	9

461	Design of High-Performance IronNiobium Composite Oxide Catalysts for NH3-SCR: Insights into the Interaction between Fe and Nb. <i>ACS Catalysis</i> , 2021 , 11, 9825-9836	13.1	11
460	Theory and practice of metal oxide catalyst design for the selective catalytic reduction of NO with NH3. <i>Catalysis Today</i> , 2021 , 376, 292-301	5.3	21
459	Enhancement of low-temperature NH3-SCR catalytic activity and H2O & SO2 resistance over commercial V2O5-MoO3/TiO2 catalyst by high shear-induced doping of expanded graphite. <i>Catalysis Today</i> , 2021 , 376, 302-310	5.3	13
458	Significant concurrent decrease in PM and NO concentrations in China during COVID-19 epidemic. Journal of Environmental Sciences, 2021 , 99, 346-353	6.4	59
457	In-situ DRIFT assessment on strengthening effect of cerium over FeO /TiO2 catalyst for selective catalytic reduction of NO with NH3. <i>Journal of Rare Earths</i> , 2021 , 39, 526-531	3.7	6
456	Co-function mechanism of multiple active sites over Ag/TiO2 for formaldehyde oxidation. <i>Applied Catalysis B: Environmental</i> , 2021 , 282, 119543	21.8	14
455	A simple strategy to improve Pd dispersion and enhance Pd/TiO2 catalytic activity for formaldehyde oxidation: The roles of surface defects. <i>Applied Catalysis B: Environmental</i> , 2021 , 282, 119	9 3 40 ⁸	34
454	Single atom Fe in favor of carbon disulfide (CS2) adsorption and thus the removal efficiency. <i>Separation and Purification Technology</i> , 2021 , 258, 118086	8.3	12
453	Investigation of suitable precursors for manganese oxide catalysts in ethyl acetate oxidation. <i>Journal of Environmental Sciences</i> , 2021 , 104, 17-26	6.4	2
452	A robust H-transfer redox mechanism determines the high-efficiency catalytic performance of layered double hydroxides. <i>Applied Catalysis B: Environmental</i> , 2021 , 285, 119806	21.8	5
451	Use of rare earth elements in single-atom site catalysis: A critical review [] Commemorating[the[] 00th[] nniversary[bf[] the[] birth[] bf[] Academician[Guangxian[Xu. Journal of Rare Earths, 2021, 39, 233-242	3.7	9
450	Significant promotion effect of the rutile phase on VO/TiO catalysts for NH-SCR. <i>Chemical Communications</i> , 2021 , 57, 355-358	5.8	7
449	Surface oxygen species essential for the catalytic activity of CeMBn (M = Mn or Fe) in soot oxidation. <i>Catalysis Science and Technology</i> , 2021 , 11, 895-903	5.5	3
448	Synergistic Effects of Multicomponents Produce Outstanding Soot Oxidation Activity in a Cs/Co/MnO Catalyst. <i>Environmental Science & Environmental Sci</i>	10.3	7
447	A Nonoxide Catalyst System Study: Alkali Metal-Promoted Pt/AC Catalyst for Formaldehyde Oxidation at Ambient Temperature. <i>ACS Catalysis</i> , 2021 , 11, 456-465	13.1	18
446	Chemical formation and source apportionment of PM at an urban site at the southern foot of the Taihang mountains. <i>Journal of Environmental Sciences</i> , 2021 , 103, 20-32	6.4	4
445	Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?. <i>Faraday Discussions</i> , 2021 , 226, 334-347	3.6	32
444	Selective catalytic reduction of NO with NH: opportunities and challenges of Cu-based small-pore zeolites. <i>National Science Review</i> , 2021 , 8, nwab010	10.8	36

(2021-2021)

443	Particle growth with photochemical age from new particle formation to haze in the winter of Beijing, China. <i>Science of the Total Environment</i> , 2021 , 753, 142207	10.2	13
442	Iron-Based Composite Oxide Catalysts Tuned by CTAB Exhibit Superior NH3BCR Performance. <i>Catalysts</i> , 2021 , 11, 224	4	1
441	Measurement report: Effects of photochemical aging on the formation and evolution of summertime secondary aerosol in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 1341-1356	6.8	7
440	Adsorption-Induced Active Vanadium Species Facilitate Excellent Performance in Low-Temperature Catalytic NO Abatement. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10454-10461	16.4	15
439	Promotion Effects of Barium and Cobalt on Manganese Oxide Catalysts for Soot Oxidation. <i>Industrial & Company Engineering Chemistry Research</i> , 2021 , 60, 11412-11420	3.9	1
438	Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO3Ibn the Surface of a Water Droplet. <i>Angewandte Chemie</i> , 2021 , 133, 20362-20365	3.6	О
437	Facile homogeneous precipitation method to prepare MnO2 with high performance in catalytic oxidation of ethyl acetate. <i>Chemical Engineering Journal</i> , 2021 , 417, 129246	14.7	10
436	Introducing tin to develop ternary metal oxides with excellent hydrothermal stability for NH3 selective catalytic reduction of NOx. <i>Applied Catalysis B: Environmental</i> , 2021 , 291, 120125	21.8	8
435	Mechanistic Study of the Aqueous Reaction of Organic Peroxides with HSO on the Surface of a Water Droplet. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20200-20203	16.4	1
434	Ozone and SOA formation potential based on photochemical loss of VOCs during the Beijing summer. <i>Environmental Pollution</i> , 2021 , 285, 117444	9.3	15
433	Ammonium nitrate promotes sulfate formation through uptake kinetic regime. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 13269-13286	6.8	5
432	Unexpected increase in low-temperature NH3-SCR catalytic activity over Cu-SSZ-39 after hydrothermal aging. <i>Applied Catalysis B: Environmental</i> , 2021 , 294, 120237	21.8	10
431	Effects of SO2 on standard and fast SCR over CeWOx: A quantitative study of the reaction pathway and active sites. <i>Applied Catalysis B: Environmental</i> , 2021 , 301, 120784	21.8	3
430	To enhance water resistance for catalytic ozone decomposition by fabricating H2O adsorption-site in OMS-2 tunnels. <i>Applied Catalysis B: Environmental</i> , 2021 , 297, 120466	21.8	5
429	Redox and acid properties of MnV2Ox/TiO2 catalysts synthesized by assistance of microwave for NO selective catalytic reduction by ammonia. <i>Chemical Engineering Journal Advances</i> , 2021 , 8, 100156	3.6	1
428	Microkinetic study of NO oxidation, standard and fast NH3-SCR on CeWOx at low temperatures. <i>Chemical Engineering Journal</i> , 2021 , 423, 130128	14.7	7
427	Highly efficient Ru/CeO2 catalysts for formaldehyde oxidation at low temperature and the mechanistic study. <i>Catalysis Science and Technology</i> , 2021 , 11, 1914-1921	5.5	5
426	Layered Double Hydroxide Catalysts for Ozone Decomposition: The Synergic Role of M and M <i>Environmental Science & Decomposition</i> 2021,	10.3	1

425	Importance of controllable Al sites in CHA framework by crystallization pathways for NH3-SCR reaction. <i>Applied Catalysis B: Environmental</i> , 2020 , 277, 119193	21.8	17
424	Challenges and opportunities for manganese oxides in low-temperature selective catalytic reduction of NOx with NH3: H2O resistance ability. <i>Journal of Solid State Chemistry</i> , 2020 , 289, 121464	3.3	20
423	Recent advances in catalytic decomposition of ozone. <i>Journal of Environmental Sciences</i> , 2020 , 94, 14-3	16.4	40
422	Investigation of Suitable Templates for One-Pot-Synthesized Cu-SAPO-34 in NO Abatement from Diesel Vehicle Exhaust. <i>Environmental Science & Exhaust (Science & Exhau</i>	10.3	15
421	Role of dimethyl ether in incipient soot formation in premixed ethylene flames. <i>Combustion and Flame</i> , 2020 , 216, 271-279	5.3	10
420	Inhibitory role of excessive NH3 in NH3-SCR on CeWOx at low temperatures. <i>Catalysis Science and Technology</i> , 2020 , 10, 2758-2762	5.5	4
419	A MnO2-based catalyst with H2O resistance for NH3-SCR: Study of catalytic activity and reactants-H2O competitive adsorption. <i>Applied Catalysis B: Environmental</i> , 2020 , 270, 118860	21.8	67
418	Contrasting trends of PM and surface-ozone concentrations in China from 2013 to 2017. <i>National Science Review</i> , 2020 , 7, 1331-1339	10.8	119
417	Hydrothermal Stability Enhancement of Al-Rich Cu-SSZ-13 for NH3 Selective Catalytic Reduction Reaction by Ion Exchange with Cerium and Samarium. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 6416-6423	3.9	13
416	High-performance of Cu-TiO2 for photocatalytic oxidation of formaldehyde under visible light and the mechanism study. <i>Chemical Engineering Journal</i> , 2020 , 390, 124481	14.7	42
415	Impacts of Mixed Gaseous and Particulate Pollutants on Secondary Particle Formation during Ozonolysis of Butyl Vinyl Ether. <i>Environmental Science & Environmental Science & E</i>	10.3	3
414	The adsorption and oxidation of SO2 on MgO surface: experimental and DFT calculation studies. <i>Environmental Science: Nano</i> , 2020 , 7, 1092-1101	7.1	8
413	Quantitative determination of the Cu species, acid sites and NH3-SCR mechanism on Cu-SSZ-13 and H-SSZ-13 at low temperatures. <i>Catalysis Science and Technology</i> , 2020 , 10, 1135-1150	5.5	8
412	Resolving the puzzle of single-atom silver dispersion on nanosized FAlO surface for high catalytic performance. <i>Nature Communications</i> , 2020 , 11, 529	17.4	43
411	Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized cu-zeolites for NH3-SCR reaction. <i>Applied Catalysis B: Environmental</i> , 2020 , 266, 118655	21.8	47
410	Chemical characterization of submicron aerosol in summertime Beijing: A case study in southern suburbs in 2018. <i>Chemosphere</i> , 2020 , 247, 125918	8.4	11
409	Effect of SO2 treatment in the presence and absence of O2 over cerialitania oxides for selective catalytic reduction. <i>Journal of Materials Science</i> , 2020 , 55, 4570-4577	4.3	2
408	Adsorptive removal of toluene and dichloromethane from humid exhaust on MFI, BEA and FAU zeolites: An experimental and theoretical study. <i>Chemical Engineering Journal</i> , 2020 , 394, 124986	14.7	24

(2020-2020)

407	The effect of crystallite size on low-temperature hydrothermal stability of Cu-SAPO-34. <i>Catalysis Science and Technology</i> , 2020 , 10, 2855-2863	5.5	9
406	Water Promotes the Oxidation of SO by O over Carbonaceous Aerosols. <i>Environmental Science</i> & amp; Technology, 2020 , 54, 7070-7077	10.3	9
405	The promotion effect of nitrous acid on aerosol formation in wintertime in Beijing: the possible contribution of traffic-related emissions. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 13023-13040	6.8	14
404	Hydrothermal aging alleviates the inhibition effects of NO2 on Cu-SSZ-13 for NH3-SCR. <i>Applied Catalysis B: Environmental</i> , 2020 , 275, 119105	21.8	35
403	Investigation of Water and Sulfur Tolerance of Precipitable Silver Compound Ag/AlO Catalysts in H-Assisted CH-SCR of NO. <i>ACS Omega</i> , 2020 , 5, 29593-29600	3.9	3
402	Interfacial structure-governed SO2 resistance of Cu/TiO2 catalysts in the catalytic oxidation of CO. <i>Catalysis Science and Technology</i> , 2020 , 10, 1661-1674	5.5	9
401	Industrial carbon dioxide capture and utilization: state of the art and future challenges. <i>Chemical Society Reviews</i> , 2020 , 49, 8584-8686	58.5	184
400	Promoting effect of microwave irradiation on CeO2-TiO2 catalyst for selective catalytic reduction of NO by NH3. <i>Journal of Rare Earths</i> , 2020 , 38, 59-69	3.7	25
399	Effects of SO2 on Cu-SSZ-39 catalyst for the selective catalytic reduction of NOx with NH3. <i>Catalysis Science and Technology</i> , 2020 , 10, 1256-1263	5.5	18
398	Effects of SO and HO on low-temperature NO conversion over F-VO-WO/TiO catalysts. <i>Journal of Environmental Sciences</i> , 2020 , 90, 253-261	6.4	12
397	Detrimental role of residual surface acid ions on ozone decomposition over Ce-modified EMnO under humid conditions. <i>Journal of Environmental Sciences</i> , 2020 , 91, 43-53	6.4	17
396	Promotion effect of cerium doping on ironlitanium composite oxide catalysts for selective catalytic reduction of NOx with NH3. <i>Catalysis Science and Technology</i> , 2020 , 10, 648-657	5.5	15
395	Novel CeMnaOx catalyst for highly efficient catalytic decomposition of ozone. <i>Applied Catalysis B: Environmental</i> , 2020 , 264, 118498	21.8	20
394	Effect of treatment atmosphere on the vanadium species of V/TiO2 catalysts for the selective catalytic reduction of NOx with NH3. <i>Catalysis Science and Technology</i> , 2020 , 10, 311-314	5.5	10
393	Synthesis of Cu-SSZ-13 catalyst by using different silica sources for NO-SCR by NH3. <i>Molecular Catalysis</i> , 2020 , 484, 110738	3.3	6
392	A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13. <i>Applied Catalysis B: Environmental</i> , 2020 , 264, 118511	21.8	62
391	Influence of atmospheric conditions on sulfuric acid-dimethylamine-ammonia-based new particle formation. <i>Chemosphere</i> , 2020 , 245, 125554	8.4	16
390	Enhancing Oxygen Vacancies of Ce-OMS-2 via Optimized Hydrothermal Conditions to Improve Catalytic Ozone Decomposition. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 118-128	3.9	21

389	Unprecedented Ambient Sulfur Trioxide (SO) Detection: Possible Formation Mechanism and Atmospheric Implications. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 809-818	11	14
388	Distinct NO Effects on Cu-SSZ-13 and Cu-SSZ-39 in the Selective Catalytic Reduction of NO with NH. <i>Environmental Science & Eamp; Technology</i> , 2020 , 54, 15499-15506	10.3	19
387	Passive NO Adsorption on Hydrothermally Aged Pd-Based Small-Pore Zeolites. <i>Topics in Catalysis</i> , 2020 , 63, 944-953	2.3	8
386	Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NOx with NH3. <i>Chemical Engineering Journal</i> , 2020 , 388, 124250	14.7	27
385	Air Pollutant Correlations in China: Secondary Air Pollutant Responses to NOx and SO2 Control. <i>Environmental Science and Technology Letters</i> , 2020 , 7, 695-700	11	35
384	Insights into Designing Photocatalysts for Gaseous Ammonia Oxidation under Visible Light. <i>Environmental Science & Environmental Science & Environment</i>	10.3	7
383	Identification of a Facile Pathway for Dioxymethylene Conversion to Formate Catalyzed by Surface Hydroxyl on TiO2-Based Catalyst. <i>ACS Catalysis</i> , 2020 , 10, 9706-9715	13.1	25
382	Understanding the knowledge gaps between air pollution controls and health impacts including pathogen epidemic. <i>Environmental Research</i> , 2020 , 189, 109949	7.9	12
381	Single-atom site catalysts for environmental catalysis. <i>Nano Research</i> , 2020 , 13, 3165-3182	10	134
380	Combination of Low- and Medium-Temperature Catalysts for the Selective Catalytic Reduction of NOx with NH3. <i>Topics in Catalysis</i> , 2020 , 63, 924-931	2.3	6
379	Continuous and comprehensive atmospheric observations in Beijing: a station to understand the complex urban atmospheric environment. <i>Big Earth Data</i> , 2020 , 4, 295-321	4.1	18
378	Efficient Conversion of NO to NO on SO-Aged MgO under Atmospheric Conditions. <i>Environmental Science & Environmental Science &</i>	10.3	5
377	Recent advances in three-way catalysts of natural gas vehicles. <i>Catalysis Science and Technology</i> , 2020 , 10, 6407-6419	5.5	14
376	Improving the catalytic performance of ozone decomposition over Pd-Ce-OMS-2 catalysts under harsh conditions. <i>Catalysis Science and Technology</i> , 2020 , 10, 7671-7680	5.5	7
375	Tuning the Chemical State of Silver on Ag-Mn Catalysts to Enhance the Ozone Decomposition Performance. <i>Environmental Science & Environmental </i>	10.3	12
374	Formaldehyde Oxidation on Pd/TiO2 Catalysts at Room Temperature: The Effects of Surface Oxygen Vacancies. <i>Topics in Catalysis</i> , 2020 , 63, 810-816	2.3	5
373	Recent Progress on Improving Low-Temperature Activity of Vanadia-Based Catalysts for the Selective Catalytic Reduction of NOx with Ammonia. <i>Catalysts</i> , 2020 , 10, 1421	4	9
372	Promoting Effect of Mn on In Situ Synthesized Cu-SSZ-13 for NH3-SCR. <i>Catalysts</i> , 2020 , 10, 1375	4	3

(2019-2020)

371	Tuning the fill percentage in the hydrothermal synthesis process to increase catalyst performance for ozone decomposition. <i>Journal of Environmental Sciences</i> , 2020 , 87, 60-70	6.4	8
370	Effect of support preparation with different concentration precipitant on the NOx storage performance of Pt/BaO/CeO2 catalysts. <i>Catalysis Today</i> , 2020 , 339, 135-147	5.3	10
369	A superior Fe-V-Ti catalyst with high activity and SO resistance for the selective catalytic reduction of NO with NH. <i>Journal of Hazardous Materials</i> , 2020 , 382, 120970	12.8	58
368	The way to enhance the thermal stability of V2O5-based catalysts for NH3-SCR. <i>Catalysis Today</i> , 2020 , 355, 408-414	5.3	11
367	Investigation of the common intermediates over Fe-ZSM-5 in NH-SCR reaction at low temperature by in situ DRIFTS. <i>Journal of Environmental Sciences</i> , 2020 , 94, 32-39	6.4	10
366	A review of experimental techniques for aerosol hygroscopicity studies 2019,		1
365	Activity enhancement of Pt/MnOx catalyst by novel MnO2 for low-temperature CO oxidation: study of the COD2 competitive adsorption and active oxygen species. <i>Catalysis Science and Technology</i> , 2019 , 9, 347-354	5.5	26
364	Cu-exchanged RTH-type zeolites for NH3-selective catalytic reduction of NOx: Cu distribution and hydrothermal stability. <i>Catalysis Science and Technology</i> , 2019 , 9, 106-115	5.5	26
363	Contrary Role of HO and O in the Kinetics of Heterogeneous Photochemical Reactions of SO on TiO. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 1311-1318	2.8	13
362	Important role of aromatic hydrocarbons in SOA formation from unburned gasoline vapor. <i>Atmospheric Environment</i> , 2019 , 201, 101-109	5.3	18
361	Acidic permanganate oxidation of sulfamethoxazole by stepwise electron-proton transfer. <i>Chemosphere</i> , 2019 , 222, 71-82	8.4	9
3 60	Significant source of secondary aerosol: formation from gasoline evaporative emissions in the presence of SO₂ and NH₃. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 8063-8081	6.8	28
359	Effects of ultrasonic treatment on dithiothreitol (DTT) assay measurements for carbon materials. Journal of Environmental Sciences, 2019 , 84, 51-58	6.4	6
358	Enhancement of aqueous sulfate formation by the coexistence of NO/NH under high ionic strengths in aerosol water. <i>Environmental Pollution</i> , 2019 , 252, 236-244	9.3	29
357	A Comprehensive Study about the Hygroscopic Behavior of Mixtures of Oxalic Acid and Nitrate Salts: Implication for the Occurrence of Atmospheric Metal Oxalate Complex. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 1216-1225	3.2	9
356	Effect of Organic Assistant on the Performance of Ceria-Based Catalysts for the Selective Catalytic Reduction of NO with Ammonia. <i>Catalysts</i> , 2019 , 9, 357	4	5
355	Atomic-scale insights into zeolite-based catalysis in NO decomposition. <i>Science of the Total Environment</i> , 2019 , 673, 266-271	10.2	6
354	SSZ-13 Synthesized by Solvent-Free Method: A Potential Candidate for NH3-SCR Catalyst with High Activity and Hydrothermal Stability. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 5397-54	.03 ^{.9}	11

353	Secondary organic aerosol formation from the OH-initiated oxidation of guaiacol under different experimental conditions. <i>Atmospheric Environment</i> , 2019 , 207, 30-37	5.3	19
352	Water adsorption and hygroscopic growth of six anemophilous pollen species: the effect of temperature. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2247-2258	6.8	27
351	Polytetrafluoroethylene modifying: A low cost and easy way to improve the H2O resistance ability over MnOx for low-temperature NH3-SCR. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 1030)44 ⁸	16
350	Improvement of low-temperature catalytic activity over hierarchical Fe-Beta catalysts for selective catalytic reduction of NOx with NH3. <i>Chinese Chemical Letters</i> , 2019 , 30, 867-870	8.1	17
349	Parameterization of heterogeneous reaction of SO to sulfate on dust with coexistence of NH and NO under different humidity conditions. <i>Atmospheric Environment</i> , 2019 , 208, 133-140	5.3	18
348	Significant enhancement in water resistance of Pd/Al2O3 catalyst for benzene oxidation by Na addition. <i>Chinese Chemical Letters</i> , 2019 , 30, 1450-1454	8.1	12
347	Rate constant and secondary organic aerosol formation from the gas-phase reaction of eugenol with hydroxyl radicals. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2001-2013	6.8	14
346	Enhancement of secondary organic aerosol formation and its oxidation state by SO₂ during photooxidation of 2-methoxyphenol. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2687-2700	6.8	13
345	The promotional effect of H2 reduction treatment on the low-temperature NH3-SCR activity of Cu/SAPO-18. <i>Applied Surface Science</i> , 2019 , 483, 536-544	6.7	18
344	Shape-controlled synthesis of Pd nanocrystals with exposed {110} facets and their catalytic applications. <i>Catalysis Today</i> , 2019 , 327, 28-36	5.3	23
343	Shape dependence of support for NO storage and reduction catalysts. <i>Journal of Environmental Sciences</i> , 2019 , 75, 396-407	6.4	2
342	Variations and sources of nitrous acid (HONO) during a severe pollution episode in Beijing in winter 2016. Science of the Total Environment, 2019 , 648, 253-262	10.2	42
341	High Pt utilization efficiency of electrocatalysts for oxygen reduction reaction in alkaline media. <i>Catalysis Today</i> , 2019 , 332, 101-108	5.3	20
340	Experimental and DFT study of the adsorption of N2O on transition ion-exchanged ZSM-5. <i>Catalysis Today</i> , 2019 , 327, 177-181	5.3	15
339	The effects of H2O on a vanadium-based catalyst for NH3-SCR at low temperatures: a quantitative study of the reaction pathway and active sites. <i>Catalysis Science and Technology</i> , 2019 , 9, 5593-5604	5.5	6
338	Nanodispersed MnO/EAlO for NO Elimination at Room Temperature. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 10855-10862	10.3	4
337	Role of Structural Defects in MnO Promoted by Ag Doping in the Catalytic Combustion of Volatile Organic Compounds and Ambient Decomposition of O. <i>Environmental Science & Environmental Science & Env</i>	10.3	53
336	Oxidation Potential Reduction of Carbon Nanomaterials during Atmospheric-Relevant Aging: Role of Surface Coating. <i>Environmental Science & Environmental Science & Environment</i>	10.3	8

335	The effect of water on the heterogeneous reactions of SO2 and NH3 on the surfaces of ⊞e2O3 and EAl2O3. <i>Environmental Science: Nano</i> , 2019 , 6, 2749-2758	7.1	15
334	Impacts of SO, Relative Humidity, and Seed Acidity on Secondary Organic Aerosol Formation in the Ozonolysis of Butyl Vinyl Ether. <i>Environmental Science & Environmental Scien</i>	10.3	11
333	Influence of functional groups on toxicity of carbon nanomaterials. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 8175-8187	6.8	12
332	A review of experimental techniques for aerosol hygroscopicity studies. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 12631-12686	6.8	46
331	Mechanism of the H2 Effect on NH3-Selective Catalytic Reduction over Ag/Al2O3: Kinetic and Diffuse Reflectance Infrared Fourier Transform Spectroscopy Studies. <i>ACS Catalysis</i> , 2019 , 9, 10489-104	98.1	15
330	Theoretical Study of PAH Growth by Phenylacetylene Addition. <i>Journal of Physical Chemistry A</i> , 2019 , 123, 10323-10332	2.8	4
329	Drivers of improved PM air quality in China from 2013 to 2017. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 24463-24469	11.5	578
328	Effects of NO ₂ and C ₃ H ₆ on the heterogeneous oxidation of SO ₂ on TiO ₂ in the presence or absence of UV\(\mathbb{U}\) is irradiation. Atmospheric Chemistry and Physics, 2019, 19, 14777-14790	6.8	7
327	A mini-review on the role of quasi-compounds in catalysis The ammonia synthesis reaction on metals. <i>Surface Science</i> , 2019 , 679, 264-272	1.8	2
326	Quantitative study of the NH3-SCR pathway and the active site distribution over CeWOx at low temperatures. <i>Journal of Catalysis</i> , 2019 , 369, 372-381	7.3	32
325	The balance of acidity and redox capability over modified CeO catalyst for the selective catalytic reduction of NO with NH. <i>Journal of Environmental Sciences</i> , 2019 , 79, 273-279	6.4	18
324	A laboratory study on the hygroscopic behavior of H2C2O4-containing mixed particles. <i>Atmospheric Environment</i> , 2019 , 200, 34-39	5.3	5
323	Facile synthesis of Ag-modified manganese oxide for effective catalytic ozone decomposition. Journal of Environmental Sciences, 2019 , 80, 159-168	6.4	23
322	Electrochemical oxidation of gaseous benzene on a Sb-SnO/foam Ti nano-coating electrode in all-solid cell. <i>Chemosphere</i> , 2019 , 217, 780-789	8.4	10
321	Insights into the Activation Effect of H2 Pretreatment on Ag/Al2O3 Catalyst for the Selective Oxidation of Ammonia. <i>ACS Catalysis</i> , 2019 , 9, 1437-1445	13.1	40
320	Differences of the oxidation process and secondary organic aerosol formation at low and high precursor concentrations. <i>Journal of Environmental Sciences</i> , 2019 , 79, 256-263	6.4	14
319	Insight into the origin of sulfur tolerance of Ag/Al2O3 in the H2-C3H6-SCR of NOx. <i>Applied Catalysis B: Environmental</i> , 2019 , 244, 909-918	21.8	29
318	Deactivation of Cu-SSZ-13 in the presence of SO2 during hydrothermal aging. <i>Catalysis Today</i> , 2019 , 320, 84-90	5.3	39

317	Promoting Effect of Organic Ligand on the Performance of Ceria for the Selective Catalytic Reduction of NO by NH3. <i>ChemistrySelect</i> , 2018 , 3, 2683-2691	1.8	6
316	The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3. <i>Applied Catalysis B: Environmental</i> , 2018 , 230, 165-176	21.8	103
315	The Keggin Structure: An Important Factor in Governing NH3BCR Activity Over the V2O5MoO3/TiO2 Catalyst. <i>Catalysis Letters</i> , 2018 , 148, 1228-1235	2.8	16
314	Alkali resistance promotion of Ce-doped vanadium-titanic-based NH-SCR catalysts. <i>Journal of Environmental Sciences</i> , 2018 , 73, 155-161	6.4	16
313	Nanosize Effect of Al2O3 in Ag/Al2O3 Catalyst for the Selective Catalytic Oxidation of Ammonia. <i>ACS Catalysis</i> , 2018 , 8, 2670-2682	13.1	75
312	A Low-Temperature Route Triggered by Water Vapor during the Ethanol-SCR of NOx over Ag/Al2O3. <i>ACS Catalysis</i> , 2018 , 8, 2699-2708	13.1	19
311	Precisely controlled synthesis of 伊MnO materials by adding Zn(acac) as a phase transformation-inducing agent. <i>Chemical Communications</i> , 2018 , 54, 1477-1480	5.8	13
310	Silver Valence State Determines the Water Tolerance of Ag/Al2O3 for the H2¶3H6BCR of NOx. Journal of Physical Chemistry C, 2018 , 122, 670-680	3.8	16
309	Palladium supported on low-surface-area fiber-based materials for catalytic oxidation of volatile organic compounds. <i>Chemical Engineering Journal</i> , 2018 , 348, 361-369	14.7	38
308	Role of Carbonaceous Aerosols in Catalyzing Sulfate Formation. <i>ACS Catalysis</i> , 2018 , 8, 3825-3832	13.1	35
307	Facet-dependent performance of anatase TiO2 for photocatalytic oxidation of gaseous ammonia. <i>Applied Catalysis B: Environmental</i> , 2018 , 223, 209-215	21.8	50
306	Insight into the Role of Pd State on Pd-Based Catalysts in o-Xylene Oxidation at Low Temperature. <i>ChemCatChem</i> , 2018 , 10, 998-1004	5.2	17
305	Response of soil methane uptake to simulated nitrogen deposition and grazing management across three types of steppe in Inner Mongolia, China. <i>Science of the Total Environment</i> , 2018 , 612, 799-8	808 ^{.2}	7
304	Electrochemical oxidation of volatile organic compounds in all-solid cell at ambient temperature. Chemical Engineering Journal, 2018 , 354, 93-104	14.7	6
303	DRIFT Study on Promotion Effect of the Keggin Structure over V2O5-MoO3/TiO2 Catalysts for Low Temperature NH3-SCR Reaction. <i>Catalysts</i> , 2018 , 8, 143	4	13
302	Silver incorporated into cryptomelane-type Manganese oxide boosts the catalytic oxidation of benzene. <i>Applied Catalysis B: Environmental</i> , 2018 , 239, 214-222	21.8	71
301	Role of NH in the Heterogeneous Formation of Secondary Inorganic Aerosols on Mineral Oxides. <i>Journal of Physical Chemistry A</i> , 2018 , 122, 6311-6320	2.8	16
300	Synergistic Effect of TiO2BiO2 in Ag/Silli Catalyst for the Selective Catalytic Oxidation of Ammonia. <i>Industrial & Discrete Industrial & Discrete Industr</i>	3.9	21

299	NO promotion of SO conversion to sulfate: An important mechanism for the occurrence of heavy haze during winter in Beijing. <i>Environmental Pollution</i> , 2018 , 233, 662-669	9.3	68
298	Specific Role of Potassium in Promoting Ag/Al2O3 for Catalytic Oxidation of Formaldehyde at Low Temperature. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 27331-27339	3.8	24
297	Polymeric vanadyl species determine the low-temperature activity of V-based catalysts for the SCR of NO with NH. <i>Science Advances</i> , 2018 , 4, eaau4637	14.3	109
296	A CeO2/ZrO2-TiO2 Catalyst for the Selective Catalytic Reduction of NOx with NH3. <i>Catalysts</i> , 2018 , 8, 592	4	14
295	Molecular Insights into NO-Promoted Sulfate Formation on Model TiO Nanoparticles with Different Exposed Facets. <i>Environmental Science & Exposed Facets</i> , 2018, 52, 14110-14118	10.3	12
294	Oxygen Vacancies Induced by Transition Metal Doping in EMnO for Highly Efficient Ozone Decomposition. <i>Environmental Science & Environmental Science &</i>	10.3	120
293	Effects of NO2 Addition on the NH3-SCR over Small-Pore CuBSZ-13 Zeolites with Varying Cu Loadings. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 25948-25953	3.8	36
292	Sodium Enhances Ir/TiO2 Activity for Catalytic Oxidation of Formaldehyde at Ambient Temperature. <i>ACS Catalysis</i> , 2018 , 8, 11377-11385	13.1	52
291	Hydrothermal Stability of CeO-WO-ZrO Mixed Oxides for Selective Catalytic Reduction of NOx by NH. <i>Environmental Science & Environmental Science & Env</i>	10.3	19
290	Morphology-Dependent Catalytic Performance of NbOx/CeO2 Catalysts for Selective Catalytic Reduction of NOx with NH3. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 12736-12741	3.9	28
289	Secondary Organic Aerosol Formation from Ambient Air at an Urban Site in Beijing: Effects of OH Exposure and Precursor Concentrations. <i>Environmental Science & Exposure & Expos</i>	10.3	28
288	Influence of metal-mediated aerosol-phase oxidation on secondary organic aerosol formation from the ozonolysis and OH-oxidation of pinene. <i>Scientific Reports</i> , 2017 , 7, 40311	4.9	12
287	Activity of Selective Catalytic Reduction of NO over V2O5/TiO2 Catalysts Preferentially Exposed Anatase {001} and {101} Facets. <i>Catalysis Letters</i> , 2017 , 147, 934-945	2.8	20
286	Remarkable synergistic effect between {001} facets and surface F ions promoting hole migration on anatase TiO2. <i>Applied Catalysis B: Environmental</i> , 2017 , 207, 397-403	21.8	36
285	SO Initiates the Efficient Conversion of NO to HONO on MgO Surface. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 3767-3775	10.3	50
284	An alumina-supported silver catalyst with high water tolerance for H2 assisted C3H6-SCR of NOx. <i>Applied Catalysis B: Environmental</i> , 2017 , 207, 60-71	21.8	30
283	Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts. <i>Frontiers of Environmental Science and Engineering</i> , 2017 , 11, 1	5.8	11
282	Enhanced Oxidation of Tetracycline by Permanganate via the Alkali-Induced Alteration of the Highest Occupied Molecular Orbital and the Electrostatic Potential. <i>Industrial & Description of the Chemistry Research</i> 2017 56, 4703-4708	3.9	11

281	High temperature reduction dramatically promotes Pd/TiO2 catalyst for ambient formaldehyde oxidation. <i>Applied Catalysis B: Environmental</i> , 2017 , 217, 560-569	21.8	116
280	Improvement of Nb Doping on SO2Resistance of VOx/CeO2Catalyst for the Selective Catalytic Reduction of NOxwith NH3. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 7803-7809	3.8	37
279	Hydrogen production from oxidative steam reforming of ethanol over Ir catalysts supported on Cella solid solution. <i>International Journal of Hydrogen Energy</i> , 2017 , 42, 11177-11186	6.7	9
278	Heterogeneous reaction of SO2 with soot: The roles of relative humidity and surface composition of soot in surface sulfate formation. <i>Atmospheric Environment</i> , 2017 , 152, 465-476	5.3	44
277	Structure Ectivity relationship of surface hydroxyl groups during NO2 adsorption and transformation on TiO2 nanoparticles. <i>Environmental Science: Nano</i> , 2017 , 4, 2388-2394	7.1	32
276	Oxygen vacancy clusters essential for the catalytic activity of CeO nanocubes for o-xylene oxidation. <i>Scientific Reports</i> , 2017 , 7, 12845	4.9	53
275	New Insight into and Characterization of the Aqueous Metal-Enol(ate) Complexes of (Acetonedicarboxylato)copper. <i>ACS Omega</i> , 2017 , 2, 6728-6740	3.9	2
274	Heterogeneous reaction of NO with soot at different relative humidity. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 21248-21255	5.1	11
273	Complete oxidation of formaldehyde at room temperature over an Al-rich Beta zeolite supported platinum catalyst. <i>Applied Catalysis B: Environmental</i> , 2017 , 219, 200-208	21.8	42
272	Heterogeneous Reaction of SO on Manganese Oxides: the Effect of Crystal Structure and Relative Humidity. <i>Scientific Reports</i> , 2017 , 7, 4550	4.9	39
271	Significant enhancement in activity of Pd/TiO 2 catalyst for formaldehyde oxidation by Na addition. <i>Catalysis Today</i> , 2017 , 281, 412-417	5.3	35
270	Transition metal doped cryptomelane-type manganese oxide catalysts for ozone decomposition. <i>Applied Catalysis B: Environmental</i> , 2017 , 201, 503-510	21.8	177
269	Promotional effect of Nb additive on the activity and hydrothermal stability for the selective catalytic reduction of NO with NH3 over CeZrO catalyst. <i>Applied Catalysis B: Environmental</i> , 2016 , 180, 766-774	21.8	115
268	The photoenhanced aging process of soot by the heterogeneous ozonization reaction. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 24401-7	3.6	16
267	DFT studies on the heterogeneous oxidation of SO by oxygen functional groups on graphene. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 31691-31697	3.6	26
266	Synergetic formation of secondary inorganic and organic aerosol: effect of SO₂ and NH₃ on particle formation and growth. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 14219-14230	6.8	61
265	High-resolution ammonia emissions inventories in China from 1980 to 2012. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 2043-2058	6.8	185
264	Promotion of ceria for decomposition of ammonia bisulfate over V2O5-MoO3/TiO2 catalyst for selective catalytic reduction. <i>Chemical Engineering Journal</i> , 2016 , 303, 275-281	14.7	68

(2016-2016)

Resistance to SO2 poisoning of V2O5/TiO2-PILC catalyst for the selective catalytic reduction of NO by NH3. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 888-897	11.3	21
Oxygen vacancies on nanosized ceria govern the NOx storage capacity of NSR catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 3950-3962	5.5	36
Nitrogen deposition but not climate warming promotes Deyeuxia angustifolia encroachment in alpine tundra of the Changbai Mountains, Northeast China. <i>Science of the Total Environment</i> , 2016 , 544, 85-93	10.2	19
Exploring the nitrous acid (HONO) formation mechanism in winter Beijing: direct emissions and heterogeneous production in urban and suburban areas. <i>Faraday Discussions</i> , 2016 , 189, 213-30	3.6	53
Effects of precursors for manganese-loaded EAl2O3 catalysts on plasma-catalytic removal of o-xylene. <i>Chemical Engineering Journal</i> , 2016 , 288, 406-413	14.7	35
Distinct potential aerosol masses under different scenarios of transport at a suburban site of Beijing. <i>Journal of Environmental Sciences</i> , 2016 , 39, 52-61	6.4	10
Shape dependence of nanoceria on complete catalytic oxidation of o-xylene. <i>Catalysis Science and Technology</i> , 2016 , 6, 4840-4848	5.5	47
High hydrothermal stability of CuBAPO-34 catalysts for the NH3-SCR of NOx. <i>Chemical Engineering Journal</i> , 2016 , 294, 254-263	14.7	96
Synergistic formation of sulfate and ammonium resulting from reaction between SO2 and NH3 on typical mineral dust. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 956-64	3.6	45
Influence of alkali metals on Pd/TiO2 catalysts for catalytic oxidation of formaldehyde at room temperature. <i>Catalysis Science and Technology</i> , 2016 , 6, 2289-2295	5.5	79
Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light. <i>Applied Catalysis B: Environmental</i> , 2016 , 184, 28-34	21.8	241
Antimicrobial activity of silver loaded MnO2 nanomaterials with different crystal phases against Escherichia coli. <i>Journal of Environmental Sciences</i> , 2016 , 41, 112-120	6.4	14
Effect of V2O5 Additive on the SO2 Resistance of a Fe2O3/AC Catalyst for NH3-SCR of NOx at Low Temperatures. <i>Industrial & Description of the South</i> (1997) <i>Industrial & Description of the Mistry Research</i> , 2016 , 55, 2677-2685	3.9	50
A novel W-doped Ni-Mg mixed oxide catalyst for CO2 methanation. <i>Applied Catalysis B: Environmental</i> , 2016 , 196, 108-116	21.8	110
Effect of Doping Metals on OMS-2/EAl2O3 Catalysts for Plasma-Catalytic Removal of o-Xylene. Journal of Physical Chemistry C, 2016 , 120, 6136-6144	3.8	36
A novel one-pot synthesized CuCe-SAPO-34 catalyst with high NH3-SCR activity and H2O resistance. <i>Catalysis Communications</i> , 2016 , 81, 20-23	3.2	26
Influence of sulfur in fuel on the properties of diffusion flame soot. <i>Atmospheric Environment</i> , 2016 , 142, 383-392	5.3	15
Water Effect on Preparation of Ag/Al2O3 Catalyst for Reduction of NOx by Ethanol. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 24294-24301	3.8	13
	by NH3. Chinese Journal of Catalysis, 2016, 37, 888-897 Oxygen vacancies on nanosized ceria govern the NOx storage capacity of NSR catalysts. Catalysis Science and Technology, 2016, 6, 3950-3962 Nitrogen deposition but not climate warming promotes Deyeuxia angustifolia encroachment in alpine tundra of the Changbai Mountains, Northeast China. Science of the Total Environment, 2016, 544, 85-93 Exploring the nitrous acid (HONO) formation mechanism in winter Beijing: direct emissions and heterogeneous production in urban and suburban areas. Faraday Discussions, 2016, 189, 213-30 Effects of precursors for manganese-loaded BAI2O3 catalysts on plasma-catalytic removal of oxylene. Chemical Engineering Journal, 2016, 288, 406-413 Distinct potential aerosol masses under different scenarios of transport at a suburban site of Beijing. Journal of Environmental Sciences, 2016, 39, 52-61 Shape dependence of nanoceria on complete catalytic oxidation of o-xylene. Catalysis Science and Technology, 2016, 6, 4840-4848 High hydrothermal stability of CuBAPO-34 catalysts for the NH3-SCR of NOx. Chemical Engineering Journal, 2016, 294, 254-263 Synergistic formation of sulfate and ammonium resulting from reaction between SO2 and NH3 on typical mineral dust. Physical Chemistry Chemical Physics, 2016, 18, 956-64 Influence of alkali metals on Pd/TiO2 catalysts for catalytic oxidation of formaldehyde at room temperature. Catalysis Science and Technology, 2016, 6, 2289-2295 Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light. Applied Catalysis B: Environmental, 2016, 184, 28-34 Antimicrobial activity of silver loaded MnO2 nanomaterials with different crystal phases against Escherichia coli. Journal of Environmental Sciences, 2016, 41, 112-120 Effect of V2O5 Additive on the SO2 Resistance of a Fe2O3/AC Catalyst for NH3-SCR of NOx at Low Temperatures. Industrial & Bamp; Engineering Chemistry Research, 2016, 55, 2677-2685 A novel W-doped Ni-Mg mixed oxide catalyst for CO2 methanation. Applied Cataly	Dy NH3. Chinese Journal of Catalysis, 2016, 37, 888-897 Oxygen vacancies on nanosized ceria govern the NOx storage capacity of NSR catalysts. Catalysis Science and Technology, 2016, 6, 3950-3962 Nitrogen deposition but not climate warming promotes Deyeuxia angustifolia encroachment in alpine tundra of the Changbai Mountains, Northeast China. Science of the Total Environment, 2016, 544, 85-93 Exploring the nitrous acid (HONO) formation mechanism in winter Beijing: direct emissions and heterogeneous production in urban and suburban areas. Faraday Discussions, 2016, 189, 213-30 Effects of precursors for manganese-loaded Bal2O3 catalysts on plasma-catalytic removal of oxylene. Chemical Engineering Journal, 2016, 288, 406-413 Distinct potential aerosol masses under different scenarios of transport at a suburban site of Beijing. Journal of Environmental Sciences, 2016, 39, 52-61 Shape dependence of nanoceria on complete catalytic oxidation of oxylene. Catalysis Science and Technology, 2016, 6, 4840-4848 High hydrothermal stability of CuBAPO-34 catalysts for the NH3-SCR of NOx. Chemical Engineering Journal, 2016, 294, 254-263 Synergistic formation of sulfate and ammonium resulting from reaction between SO2 and NH3 on typical mineral dust. Physical Chemistry Chemical Physics, 2016, 18, 956-64 Influence of alkali metals on Pd/TiO2 catalysts for catalytic oxidation of formaldehyde at room temperature. Catalysis Science and Technology, 2016, 6, 2289-2295 Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light. Applied Catalysis B: Environmental, 2016, 184, 28-34 Antimicrobial activity of silver loaded MnO2 nanomaterials with different crystal phases against Escherichia coli. Journal of Environmental Sciences, 2016, 41, 112-120 Effect of V2O5 Additive on the SO2 Resistance of a Fe2O3/AC Catalyst for NH3-SCR of NOx at Low Temperatures. Industrial & amp; Engineering Chemistry Research, 2016, 55, 2677-2685 39 Effect of Doping Metals on OMS-2/EMI2O3 Catalysts for Plasma-Catalytic Remov

245	Ozonolysis of Trimethylamine Exchanged with Typical Ammonium Salts in the Particle Phase. <i>Environmental Science & Environmental Science & Environment</i>	10.3	9
244	Effect of aluminium dust on secondary organic aerosol formation in m-xylene/NO x photo-oxidation. <i>Science China Earth Sciences</i> , 2015 , 58, 245-254	4.6	6
243	Secondary aerosol formation and oxidation capacity in photooxidation in the presence of Al2O3 seed particles and SO2. <i>Science China Chemistry</i> , 2015 , 58, 1426-1434	7.9	11
242	Remarkable promotion effect of trace sulfation on OMS-2 nanorod catalysts for the catalytic combustion of ethanol. <i>Journal of Environmental Sciences</i> , 2015 , 35, 69-75	6.4	14
241	Comparisons of measured nitrous acid (HONO) concentrations in a pollution period at urban and suburban Beijing, in autumn of 2014. <i>Science China Chemistry</i> , 2015 , 58, 1393-1402	7.9	29
240	Heterogeneous Kinetics of cis-Pinonic Acid with Hydroxyl Radical under Different Environmental Conditions. <i>Journal of Physical Chemistry A</i> , 2015 , 119, 6583-93	2.8	18
239	The effect of Fe species distribution and acidity of Fe-ZSM-5 on the hydrothermal stability and SO2 and hydrocarbons durability in NH3-SCR reaction. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 649-656	11.3	29
238	Significant Promotion Effect of Mo Additive on a Novel Ce-Zr Mixed Oxide Catalyst for the Selective Catalytic Reduction of NO(x) with NH3. <i>ACS Applied Materials & Discounty of Motory of No(x)</i> with NH3. <i>ACS Applied Materials & Discounty of No(x)</i> with NH3. <i>ACS Applied Materials & Discounty of No(x)</i> with NH3. <i>ACS Applied Materials & Discounty of No(x)</i> with NH3.	58€	144
237	Nb-doped VOx/CeO2 catalyst for NH3-SCR of NOx at low temperatures. <i>RSC Advances</i> , 2015 , 5, 37675-3	336,81	26
236	Effects of post-treatment method and Na co-cation on the hydrothermal stability of CuBSZ-13 catalyst for the selective catalytic reduction of NO with NH3. <i>Applied Catalysis B: Environmental</i> , 2015 , 179, 206-212	21.8	88
235	DRIFTS study of a Ce I W mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. <i>Catalysis Science and Technology</i> , 2015 , 5, 2290-2299	5.5	60
234	The role of Ag O Al entities in adsorption of NCO species and reduction of NO. <i>Catalysis Today</i> , 2015 , 258, 35-40	5.3	3
233	Effect of Fe on the photocatalytic removal of NO over visible light responsive Fe/TiO2 catalysts. <i>Applied Catalysis B: Environmental</i> , 2015 , 179, 21-28	21.8	102
232	Influence of relative humidity on heterogeneous kinetics of NO2 on kaolin and hematite. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 19424-31	3.6	33
231	Adsorption states of typical intermediates on Ag/Al2O3 catalyst employed in the selective catalytic reduction of NOx by ethanol. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 1312-1320	11.3	7
230	The Effects of Mn2+ Precursors on the Structure and Ozone Decomposition Activity of Cryptomelane-Type Manganese Oxide (OMS-2) Catalysts. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 23	1 1 9-23	1264
229	Promotion effect of H2 on ethanol oxidation and NOx reduction with ethanol over Ag/Al2O3 catalyst. <i>Environmental Science & Environmental Science & En</i>	10.3	24
228	Ordered mesoporous and bulk Co3O4 supported Pd catalysts for catalytic oxidation of o-xylene. <i>Catalysis Today</i> , 2015 , 242, 294-299	5.3	52

(2014-2015)

227	Decomposition of high-level ozone under high humidity over MnHe catalyst: The influence of iron precursors. <i>Catalysis Communications</i> , 2015 , 59, 156-160	3.2	79
226	High-efficiency reduction of NO emission from diesel exhaust using a CeWO catalyst. <i>Catalysis Communications</i> , 2015 , 59, 226-228	3.2	33
225	Effect of preparation methods on the activity of VOx/CeO2 catalysts for the selective catalytic reduction of NOx with NH3. <i>Catalysis Science and Technology</i> , 2015 , 5, 389-396	5.5	33
224	Effect of Support on the Activity of Ag-based Catalysts for Formaldehyde Oxidation. <i>Scientific Reports</i> , 2015 , 5, 12950	4.9	70
223	Complete Catalytic Oxidation of Ethanol over MnO2 with Different Crystal Phase Structures. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 353-359	3.8	6
222	Laboratory study on OH-initiated degradation kinetics of dehydroabietic acid. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 10953-62	3.6	11
221	Role of ammonia in forming secondary aerosols from gasoline vehicle exhaust. <i>Science China Chemistry</i> , 2015 , 58, 1377-1384	7.9	26
220	Catalytic oxidation of CO on metals involving an ionic process in the presence of H2O: the role of promoting materials. <i>RSC Advances</i> , 2015 , 5, 949-959	3.7	9
219	Discerning the Role of AgDAl Entities on Ag/EAl2O3 Surface in NOx Selective Reduction by Ethanol. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 3132-3142	3.8	22
218	Catalytic oxidation of formaldehyde over manganese oxides with different crystal structures. <i>Catalysis Science and Technology</i> , 2015 , 5, 2305-2313	5.5	339
217	Synthesis and herbicidal activities of 2-methylpropan-2-aminium O-methyl 1-(substituted phenoxyacetoxy)alkylphosphonates. <i>Chemical Research in Chinese Universities</i> , 2014 , 30, 82-86	2.2	7
216	Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions. <i>Atmospheric Environment</i> , 2014 , 91, 32-39	5.3	104
215	Excellent antimicrobial properties of silver-loaded mesoporous silica SBA-15. <i>Journal of Applied Microbiology</i> , 2014 , 116, 1106-18	4.7	20
214	A common feature of H2-assisted HC-SCR over Ag/Al2O3. Catalysis Science and Technology, 2014 , 4, 12	23 3. 1 24	5 19
213	Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. <i>Scientific Reports</i> , 2014 , 4, 4172	4.9	352
212	Inhibitory effect of NO2 on the selective catalytic reduction of NOx with NH3 over one-pot-synthesized CuBSZ-13 catalyst. <i>Catalysis Science and Technology</i> , 2014 , 4, 1104	5.5	96
211	Nature of Ag Species on Ag/EAl2O3: A Combined Experimental and Theoretical Study. <i>ACS Catalysis</i> , 2014 , 4, 2776-2784	13.1	49
210	Effect of sulfur poisoning on Co3O4/CeO2 composite oxide catalyst for soot combustion. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 1504-1510	11.3	9

209	Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	198
208	Selective catalytic reduction of NOx by NH3 for heavy-duty diesel vehicles. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 1438-1445	11.3	17
207	NOx selective catalytic reduction by ammonia over Cu-ETS-10 catalysts. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 1030-1035	11.3	11
206	Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in pinene photooxidation. <i>Environmental Pollution</i> , 2014 , 193, 88-93	9.3	19
205	Photocatalytic Removal of NOx over Visible Light Responsive Oxygen-Deficient TiO2. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 7434-7441	3.8	104
204	Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	200
203	The use of ceria for the selective catalytic reduction of NOx with NH3. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 1251-1259	11.3	101
202	ManganeseBiobium mixed oxide catalyst for the selective catalytic reduction of NOx with NH3 at low temperatures. <i>Chemical Engineering Journal</i> , 2014 , 250, 390-398	14.7	189
201	Effect of TiO2 calcination temperature on the photocatalytic oxidation of gaseous NH3. <i>Journal of Environmental Sciences</i> , 2014 , 26, 673-82	6.4	26
200	Fabrication of nanofibrous A- or B-sites substituted LaCoO3 perovskites with macroscopic structures and their catalytic applications. <i>Materials Research Bulletin</i> , 2014 , 51, 295-301	5.1	8
199	Environmentally-benign catalysts for the selective catalytic reduction of NO(x) from diesel engines: structure-activity relationship and reaction mechanism aspects. <i>Chemical Communications</i> , 2014 , 50, 844	1 5 :83	206
198	Enhanced Activity of Ti-Modified V2O5/CeO2 Catalyst for the Selective Catalytic Reduction of NOx with NH3. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 19506-19511	3.9	79
197	Role of aggregated Fe oxo species in N2O decomposition over Fe/ZSM-5. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 1972-1981	11.3	8
196	Hygroscopicity of particles generated from photooxidation of alpha-pinene under different oxidation conditions in the presence of sulfate seed aerosols. <i>Journal of Environmental Sciences</i> , 2014 , 26, 129-39	6.4	9
195	Haze insights and mitigation in China: an overview. <i>Journal of Environmental Sciences</i> , 2014 , 26, 2-12	6.4	77
194	Photocatalytic oxidation of gaseous ammonia over fluorinated TiO2 with exposed (001) facets. <i>Applied Catalysis B: Environmental</i> , 2014 , 152-153, 82-87	21.8	46
193	Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. <i>Journal of Inorganic Biochemistry</i> , 2014 , 135, 45-53	4.2	54
192	Research Progress in Vanadium-Free Catalysts for the Selective Catalytic Re-duction of NO with NH3. <i>Chinese Journal of Catalysis</i> , 2014 , 32, 1113-1128	11.3	3

(2013-2013)

191	The abatement of major pollutants in air and water by environmental catalysis. <i>Frontiers of Environmental Science and Engineering</i> , 2013 , 7, 302-325	5.8	31
190	Novel MnWOx catalyst with remarkable performance for low temperature NH3-SCR of NOx. <i>Catalysis Science and Technology</i> , 2013 , 3, 2699	5.5	111
189	Effect of mineral dust on secondary organic aerosol yield and aerosol size in pinene/NOx photo-oxidation. <i>Atmospheric Environment</i> , 2013 , 77, 781-789	5.3	29
188	Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3. <i>Journal of Catalysis</i> , 2013 , 307, 340-351	7.3	123
187	Heterogeneous photochemical reaction of ozone with anthracene adsorbed on mineral dust. <i>Atmospheric Environment</i> , 2013 , 72, 165-170	5.3	13
186	Heterogeneous and multiphase formation pathways of gypsum in the atmosphere. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 19196-204	3.6	22
185	Laboratory study on the hygroscopic behavior of external and internal C2-C4 dicarboxylic acid-NaCl mixtures. <i>Environmental Science & Environmental Sc</i>	10.3	23
184	Heterogeneous photochemical aging of soot by NO2 under simulated sunlight. <i>Atmospheric Environment</i> , 2013 , 64, 270-276	5.3	41
183	An XAFS study on the specific microstructure of active species in iron titanate catalyst for NH3-SCR of NOx. <i>Catalysis Today</i> , 2013 , 201, 131-138	5.3	23
182	Activation of solid surface as catalyst. <i>Catalysis Today</i> , 2013 , 201, 2-6	5.3	3
182	Activation of solid surface as catalyst. <i>Catalysis Today</i> , 2013 , 201, 2-6 Effect of pretreatment on pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature. <i>Journal of Environmental Sciences</i> , 2013 , 25, 1206-12	5·3 6.4	3
	Effect of pretreatment on pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature.		
181	Effect of pretreatment on pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature. Journal of Environmental Sciences, 2013, 25, 1206-12 Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported	6.4	41
181	Effect of pretreatment on pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature. Journal of Environmental Sciences, 2013, 25, 1206-12 Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Cella solid solution. International Journal of Hydrogen Energy, 2013, 38, 10293-10304 Fuel reforming over Ni-based catalysts coupled with selective catalytic reduction of NOx. Chinese	6.4	41 42 5
181 180 179	Effect of pretreatment on pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature. Journal of Environmental Sciences, 2013, 25, 1206-12 Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Cella solid solution. International Journal of Hydrogen Energy, 2013, 38, 10293-10304 Fuel reforming over Ni-based catalysts coupled with selective catalytic reduction of NOx. Chinese Journal of Catalysis, 2013, 34, 1407-1417 A cyclic reaction pathway triggered by ammonia for the selective catalytic reduction of NOx by	6.4	41 42 5
181 180 179 178	Effect of pretreatment on pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature. Journal of Environmental Sciences, 2013, 25, 1206-12 Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Cella solid solution. International Journal of Hydrogen Energy, 2013, 38, 10293-10304 Fuel reforming over Ni-based catalysts coupled with selective catalytic reduction of NOx. Chinese Journal of Catalysis, 2013, 34, 1407-1417 A cyclic reaction pathway triggered by ammonia for the selective catalytic reduction of NOx by ethanol over Ag/Al2O3. Applied Catalysis B: Environmental, 2013, 136-137, 103-111 Review of heterogeneous photochemical reactions of NOy on aerosol - A possible daytime source	6.4 6.7 11.3 21.8	41 42 5 23
181 180 179 178	Effect of pretreatment on pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature. Journal of Environmental Sciences, 2013, 25, 1206-12 Hydrogen production from oxidative steam reforming of ethanol over rhodium catalysts supported on Cella solid solution. International Journal of Hydrogen Energy, 2013, 38, 10293-10304 Fuel reforming over Ni-based catalysts coupled with selective catalytic reduction of NOx. Chinese Journal of Catalysis, 2013, 34, 1407-1417 A cyclic reaction pathway triggered by ammonia for the selective catalytic reduction of NOx by ethanol over Ag/Al2O3. Applied Catalysis B: Environmental, 2013, 136-137, 103-111 Review of heterogeneous photochemical reactions of NOy on aerosol - A possible daytime source of nitrous acid (HONO) in the atmosphere. Journal of Environmental Sciences, 2013, 25, 326-34 Oxidative steam reforming of ethanol over Rh catalyst supported on CellaxOy (XIIIO.3) solid	6.4 6.7 11.3 21.8 6.4	41 42 5 23 25

173	Well-dispersed palladium supported on ordered mesoporous Co3O4 for catalytic oxidation of o-xylene. <i>Applied Catalysis B: Environmental</i> , 2013 , 142-143, 72-79	21.8	77
172	Hygroscopic properties of oxalic acid and atmospherically relevant oxalates. <i>Atmospheric Environment</i> , 2013 , 69, 281-288	5.3	39
171	NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions. <i>Environmental Science & Environmental Science & E</i>	10.3	91
170	Alumina with Various Pore Structures Prepared by Spray Pyrolysis of Inorganic Aluminum Precursors. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2013 , 52, 13377-13383	3.9	6
169	Role of organic carbon in heterogeneous reaction of NO2 with soot. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 3174-81	10.3	57
168	XAFS Study on the Specific Deoxidation Behavior of Iron Titanate Catalyst for the Selective Catalytic Reduction of NOx with NH3. <i>ChemCatChem</i> , 2013 , 5, 3760-3769	5.2	29
167	Synergistic effect in the humidifying process of atmospheric relevant calcium nitrate, calcite and oxalic acid mixtures. <i>Atmospheric Environment</i> , 2012 , 50, 97-102	5.3	29
166	A case study of Asian dust storm particles: chemical composition, reactivity to SO2 and hygroscopic properties. <i>Journal of Environmental Sciences</i> , 2012 , 24, 62-71	6.4	31
165	Glucose production from hydrolysis of cellulose over a novel silica catalyst under hydrothermal conditions. <i>Journal of Environmental Sciences</i> , 2012 , 24, 473-8	6.4	29
164	Effects of Ce on catalytic combustion of methane over Pd-Pt/Al2O3 catalyst. <i>Journal of Environmental Sciences</i> , 2012 , 24, 507-11	6.4	30
163	Heterogeneous reaction of acetic acid on MgO, 🖽 l2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 8403-9	3.6	58
162	Synergistic reaction between SO2 and NO2 on mineral oxides: a potential formation pathway of sulfate aerosol. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 1668-76	3.6	109
161	Heterogeneous uptake of amines by citric acid and humic acid. <i>Environmental Science & Environmental S</i>	10.3	30
160	Influence of combustion conditions on hydrophilic properties and microstructure of flame soot. <i>Journal of Physical Chemistry A</i> , 2012 , 116, 4129-36	2.8	41
159	Intimate contact of enolic species with silver sites benefits the SCR of NOx by ethanol over Ag/Al2O3. <i>Journal of Catalysis</i> , 2012 , 293, 13-26	7.3	43
158	Alkali-Metal-Promoted Pt/TiO2 Opens a More Efficient Pathway to Formaldehyde Oxidation at Ambient Temperatures. <i>Angewandte Chemie</i> , 2012 , 124, 9766-9770	3.6	34
157	Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9628-32	16.4	481
156	Hydrothermal Deactivation of Fe-ZSM-5 Prepared by Different Methods for the Selective Catalytic Reduction of NOx with NH3. <i>Chinese Journal of Catalysis</i> , 2012 , 33, 454-464	11.3	21

155	Key role of organic carbon in the sunlight-enhanced atmospheric aging of soot by O2. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 21250-5	11.5	43
154	An environmentally-benign CeO2-TiO2 catalyst for the selective catalytic reduction of NOx with NH3 in simulated diesel exhaust. <i>Catalysis Today</i> , 2012 , 184, 160-165	5.3	146
153	A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. <i>Applied Catalysis B: Environmental</i> , 2012 , 115-116, 100-106	21.8	480
152	Effect of soot microstructure on its ozonization reactivity. <i>Journal of Chemical Physics</i> , 2012 , 137, 08450	03.9	22
151	Differences in the reactivity of ammonium salts with methylamine. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 4855-4865	6.8	25
150	Environmental-friendly catalysts for the selective catalytic reduction of NO_{<italic>x</italic>}. <i>Scientia Sinica Chimica</i> , 2012 , 42, 446-468	1.6	2
149	Facile In-Situ Synthesis of Manganese Dioxide Nanosheets on Cellulose Fibers and their Application in Oxidative Decomposition of Formaldehyde. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 16873-16878	3.8	94
148	Complete catalytic oxidation of o-xylene over CeO2 nanocubes. <i>Journal of Environmental Sciences</i> , 2011 , 23, 160-5	6.4	22
147	Experimental and density functional theory study of the adsorption of N2O on ion-exchanged ZSM-5: part II. The adsorption of N2O on main-group ion-exchanged ZSM-5. <i>Journal of Environmental Sciences</i> , 2011 , 23, 681-6	6.4	10
146	Influence of coating method on catalyst activity of AgCl/Al2O3/SUS304 composite plate. <i>Journal of Environmental Sciences</i> , 2011 , 23 Suppl, S90-4	6.4	
145	A direct sulfation method for introducing the transition metal cation Co2+ into ZrO2 with little change in the Bristed acid sites. <i>Journal of Catalysis</i> , 2011 , 279, 301-309	7.3	7
144	Heterogeneous reactions between NO2 and anthracene adsorbed on SiO2 and MgO. <i>Atmospheric Environment</i> , 2011 , 45, 917-924	5.3	30
143	Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst. <i>Catalysis Today</i> , 2011 , 175, 18-25	5.3	134
142	Mechanism of highly selective low temperature PROX reaction of CO in H2: Oxidation of CO via HCOO with OH. <i>Catalysis Today</i> , 2011 , 175, 467-470	5.3	24
141	The Remarkable Improvement of a Ce?Ti based Catalyst for NOx Abatement, Prepared by a Homogeneous Precipitation Method. <i>ChemCatChem</i> , 2011 , 3, 1286-1289	5.2	92
140	Effects of Adding CeO2 to Ag/Al2O3 Catalyst for Ammonia Oxidation at Low Temperatures. <i>Chinese Journal of Catalysis</i> , 2011 , 32, 727-735	11.3	17
139	Highly active catalysts of gold nanoparticles supported on three-dimensionally ordered macroporous LaFeO3 for soot oxidation. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 2326-9	16.4	271
138	Influence of calcination temperature on iron titanate catalyst for the selective catalytic reduction of NOx with NH3. <i>Catalysis Today</i> , 2011 , 164, 520-527	5.3	83

137	Three-dimensionally ordered macroporous Ce0.8Zr0.2O2-supported gold nanoparticles: synthesis with controllable size and super-catalytic performance for soot oxidation. <i>Energy and Environmental Science</i> , 2011 , 4, 2959	35.4	149
136	Novel cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NO(x) with NH3. <i>Chemical Communications</i> , 2011 , 47, 8046-8	5.8	307
135	Influence of sulfation on iron titanate catalyst for the selective catalytic reduction of NOx with NH3. <i>Applied Catalysis B: Environmental</i> , 2011 , 103, 369-377	21.8	200
134	Effects of temperature and reductant type on the process of NOx storage reduction over Pt/Ba/CeO2 catalysts. <i>Applied Catalysis B: Environmental</i> , 2011 , 104, 151-160	21.8	30
133	Heterogeneous uptake of carbonyl sulfide onto kaolinite within a temperature range of 220B30 K. <i>Journal of Geophysical Research</i> , 2010 , 115,		12
132	Plasmon-induced photodegradation of toxic pollutants with Ag-AgI/Al2O3 under visible-light irradiation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 857-62	16.4	506
131	StructureActivity Relationship of Iron Titanate Catalysts in the Selective Catalytic Reduction of NOx with NH3 Journal of Physical Chemistry C, 2010 , 114, 16929-16936	3.8	256
130	The utilization of physisorption analyzer for studying the hygroscopic properties of atmospheric relevant particles. <i>Journal of Physical Chemistry A</i> , 2010 , 114, 4232-7	2.8	28
129	Ultrasound-Assisted Nanocasting Fabrication of Ordered Mesoporous MnO2 and Co3O4 with High Surface Areas and Polycrystalline Walls. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 2694-2700	3.8	100
128	Electrochemical Synthesis of Catalytically Active Ru/RuO2 CoreBhell Nanoparticles without Stabilizer. <i>Chemistry of Materials</i> , 2010 , 22, 4056-4061	9.6	40
128		9.6 3.6	40 69
	Stabilizer. <i>Chemistry of Materials</i> , 2010 , 22, 4056-4061 Structural and hygroscopic changes of soot during heterogeneous reaction with O(3). <i>Physical</i>		
127	Stabilizer. Chemistry of Materials, 2010, 22, 4056-4061 Structural and hygroscopic changes of soot during heterogeneous reaction with O(3). Physical Chemistry Chemical Physics, 2010, 12, 10896-903 Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study.	3.6	69
127	Structural and hygroscopic changes of soot during heterogeneous reaction with O(3). <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 10896-903 Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 10335-10344 Flower-like tungsten oxide particles: synthesis, characterization and dimethyl methylphosphonate	3.6 6.8	69
127 126 125	Structural and hygroscopic changes of soot during heterogeneous reaction with O(3). <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 10896-903 Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 10335-10344 Flower-like tungsten oxide particles: synthesis, characterization and dimethyl methylphosphonate sensing properties. <i>Analytica Chimica Acta</i> , 2010 , 675, 36-41 Removal of arsenate from water by using an Fe-Ce oxide adsorbent: effects of coexistent fluoride	3.6 6.8 6.6	69
127 126 125	Structural and hygroscopic changes of soot during heterogeneous reaction with O(3). <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 10896-903 Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 10335-10344 Flower-like tungsten oxide particles: synthesis, characterization and dimethyl methylphosphonate sensing properties. <i>Analytica Chimica Acta</i> , 2010 , 675, 36-41 Removal of arsenate from water by using an Fe-Ce oxide adsorbent: effects of coexistent fluoride and phosphate. <i>Journal of Hazardous Materials</i> , 2010 , 179, 208-14 A comparative investigation of NdSrCu1-xCo(x)O4-delta and Sm1.8Ce0.2Cu1-xCo(x)O4-delta (x:	3.6 6.8 6.6	69 12 20 36
127 126 125 124	Structural and hygroscopic changes of soot during heterogeneous reaction with O(3). <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 10896-903 Heterogeneous reactions of carbonyl sulfide on mineral oxides: mechanism and kinetics study. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 10335-10344 Flower-like tungsten oxide particles: synthesis, characterization and dimethyl methylphosphonate sensing properties. <i>Analytica Chimica Acta</i> , 2010 , 675, 36-41 Removal of arsenate from water by using an Fe-Ce oxide adsorbent: effects of coexistent fluoride and phosphate. <i>Journal of Hazardous Materials</i> , 2010 , 179, 208-14 A comparative investigation of NdSrCu1-xCo(x)O4-delta and Sm1.8Ce0.2Cu1-xCo(x)O4-delta (x: 0-0.4) for NO decomposition. <i>Journal of Environmental Sciences</i> , 2010 , 22, 448-53 In situ DRIFTS study of hygroscopic behavior of mineral aerosol. <i>Journal of Environmental Sciences</i> ,	3.6 6.8 6.6 12.8	69 12 20 36 7

(2009-2010)

119	Remarkable influence of reductant structure on the activity of alumina-supported silver catalyst for the selective catalytic reduction of NOx. <i>Journal of Catalysis</i> , 2010 , 271, 343-350	7.3	26
118	Precipitable silver compound catalysts for the selective catalytic reduction of NOx by ethanol. <i>Applied Catalysis A: General</i> , 2010 , 375, 258-264	5.1	54
117	Selective catalytic reduction of NO with NH3 over iron titanate catalyst: Catalytic performance and characterization. <i>Applied Catalysis B: Environmental</i> , 2010 , 96, 408-420	21.8	220
116	Effect of Co addition to Pt/Ba/Al2O3 system for NOx storage and reduction. <i>Applied Catalysis B: Environmental</i> , 2010 , 100, 19-30	21.8	30
115	Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol. <i>Applied Catalysis B: Environmental</i> , 2010 , 100, 229-237	21.8	89
114	Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst: Reaction mechanism and H2O/SO2 inhibition mechanism study. <i>Catalysis Today</i> , 2010 , 153, 70-76	5.3	152
113	Mesoporous transition alumina with uniform pore structure synthesized by alumisol spray pyrolysis. <i>Chemical Engineering Journal</i> , 2010 , 163, 133-142	14.7	32
112	Preparation o fMagnetic Sulfonated Carbon-Based Solid Acid Catalysts for the Hydrolysis of Cellulose. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2010 , 26, 1873-1878	3.8	6
111	Advances in Mechanistic and Practical Studies on the Selective Catalytic Reduction of NOx by Oxygenated Hydrocarbons over Ag/Al2O3. <i>Chinese Journal of Catalysis</i> , 2010 , 31, 491-501	11.3	5
110	The role of silver species on Ag/Al2O3 catalysts for the selective catalytic oxidation of ammonia to nitrogen. <i>Journal of Catalysis</i> , 2009 , 261, 101-109	7.3	100
109	Pretreatments of Co3O4 at moderate temperature for CO oxidation at B 0 °C. <i>Journal of Catalysis</i> , 2009 , 267, 121-128	7.3	259
108	Mechanism of selective catalytic oxidation of ammonia to nitrogen over Ag/Al2O3. <i>Journal of Catalysis</i> , 2009 , 268, 18-25	7.3	132
107	In situ adsorption-catalysis system for the removal of o-xylene over an activated carbon supported Pd catalyst. <i>Journal of Environmental Sciences</i> , 2009 , 21, 985-90	6.4	32
106	Coating of FAl2O3 on the stainless steel substrate by electrophoretic deposition method. <i>Journal of Environmental Sciences</i> , 2009 , 21 Suppl 1, S112-5	6.4	10
105	A CO-Tolerant Hydrogen Fuel Cell System Designed by Combining with an Extremely Active Pt/CNT Catalyst. <i>Catalysis Letters</i> , 2009 , 127, 148-151	2.8	7
104	Effect of the pressure on the catalytic oxidation of volatile organic compounds over Ag/Al2O3 catalyst. <i>Applied Catalysis B: Environmental</i> , 2009 , 89, 659-664	21.8	37
103	Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3. <i>Applied Catalysis B: Environmental</i> , 2009 , 93, 194-204	21.8	486
102	Promotion effects and mechanism of alkali metals and alkaline earth metals on cobalt-cerium composite oxide catalysts for N2O decomposition. <i>Environmental Science & Environmental Science & Environm</i>	10.3	100

101	Experimental and theoretical study of hydrogen thiocarbonate for heterogeneous reaction of carbonyl sulfide on magnesium oxide. <i>Journal of Physical Chemistry A</i> , 2009 , 113, 3387-94	2.8	22
100	Dynamic Characterization of the Intermediates for Low-Temperature PROX Reaction of CO in H2Dxidation of CO with OH via HCOO Intermediate. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 12427-1	2 ² 4 ⁸ 33	58
99	Deactivation of a Ce/TiO2 Catalyst by SO2 in the Selective Catalytic Reduction of NO by NH3. Journal of Physical Chemistry C, 2009 , 113, 4426-4432	3.8	327
98	Comparative study of the effect of water on the heterogeneous reactions of carbonyl sulfide on the surface of Al₂3</sub> and MgO. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 6273-6286	6.8	26
97	Influence of Alkaline Earth Metals on Cobalt-Cerium Composite Oxide Catalysts for N2O Decomposition. <i>Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica</i> , 2009 , 25, 1033-1039	3.8	6
96	Heterogeneous reactivity of carbonyl sulfide on FAl2O3 and FAl2O3. <i>Atmospheric Environment</i> , 2008 , 42, 960-969	5.3	31
95	Carbonyls emission from ethanol-blended gasoline and biodiesel-ethanol-diesel used in engines. <i>Atmospheric Environment</i> , 2008 , 42, 1349-1358	5.3	95
94	Combination of biodiesel-ethanol-diesel fuel blend and SCR catalyst assembly to reduce emissions from a heavy-duty diesel engine. <i>Journal of Environmental Sciences</i> , 2008 , 20, 177-82	6.4	45
93	Catalytic Ozonation of Herbicide 2,4-D over Cobalt Oxide Supported on Mesoporous Zirconia. Journal of Physical Chemistry C, 2008 , 112, 5978-5983	3.8	67
92	Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. <i>Catalysis Communications</i> , 2008 , 9, 1453-1457	3.2	279
91	DFT and DRIFTS Studies on the Adsorption of Acetate on the Ag/Al2O3 Catalyst. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 6933-6938	3.8	14
90	Synergistic effect between NO2 and SO2 in their adsorption and reaction on gamma-alumina. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 6630-5	2.8	93
89	Temperature dependence of the heterogeneous reaction of carbonyl sulfide on magnesium oxide. Journal of Physical Chemistry A, 2008, 112, 2820-6	2.8	26
88	Bactericidal activity of a Ce-promoted Ag/AlPO4 catalyst using molecular oxygen in water. <i>Environmental Science & Environmental Science & Environment</i>	10.3	21
87	The Mechanism for the Selective Oxidation of CO Enhanced by H2O on a Novel PROC Catalyst. <i>Catalysis Letters</i> , 2008 , 120, 210-214	2.8	20
86	Review of Ag/Al2O3-Reductant System in the Selective Catalytic Reduction of NO x. <i>Catalysis Surveys From Asia</i> , 2008 , 12, 38-55	2.8	50
85	DFT and experimental investigations of the formation and adsorption of enolic species on Al2O3 catalyst. <i>Journal of Molecular Structure</i> , 2008 , 892, 320-324	3.4	1
84	DRIFTS investigation and DFT calculation of the adsorption of CO on Pt/TiO2, Pt/CeO2 and FeOx/Pt/CeO2. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2008 , 71, 1193-8	4.4	17

(2007-2008)

83	Experimental and theoretical studies of surface nitrate species on Ag/Al2O3 using DRIFTS and DFT. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008 , 71, 1446-51	4.4	33
82	Efficient disinfection of Escherichia coli in water by silver loaded alumina. <i>Journal of Inorganic Biochemistry</i> , 2008 , 102, 1736-42	4.2	40
81	Complete oxidation of o-xylene over Pd/Al2O3 catalyst at low temperature. <i>Catalysis Today</i> , 2008 , 139, 15-23	5.3	92
80	Study of NOx selective catalytic reduction by ethanol over Ag/Al2O3 catalyst on a HD diesel engine. <i>Chemical Engineering Journal</i> , 2008 , 135, 195-201	14.7	37
79	Theoretical and experimental analysis on vibrational spectra of formate species adsorbed on CuAl2O3 catalyst. <i>Computational and Theoretical Chemistry</i> , 2008 , 857, 38-43		12
78	A comparison between the vacuum ultraviolet photoionization time-of-flight mass spectra and the GC/MS total ion chromatograms of polycyclic aromatic hydrocarbons contained in coal soot and multi-component PAH particles. <i>International Journal of Mass Spectrometry</i> , 2008 , 274, 64-69	1.9	17
77	Theoretical and experiment studies on the adsorption of formate species on the surface of catalyst. <i>Journal of Molecular Structure</i> , 2008 , 891, 242-246	3.4	5
76	Characterization and reactivity of MnO(x) supported on mesoporous zirconia for herbicide 2,4-D mineralization with ozone. <i>Environmental Science & Environmental Science & Env</i>	10.3	109
75	Novel iron titanate catalyst for the selective catalytic reduction of NO with NH3 in the medium temperature range. <i>Chemical Communications</i> , 2008 , 2043-5	5.8	125
74	Bactericidal mechanism of Ag/Al2O3 against Escherichia coli. <i>Langmuir</i> , 2007 , 23, 11197-9	4	57
73	Oxygen Poisoning Mechanism of Catalytic Hydrolysis of OCS over Al2O3 at Room Temperature. <i>Acta Physico-chimica Sinica</i> , 2007 , 23, 997-1002		14
72	Mechanism of heterogeneous reaction of carbonyl sulfide on magnesium oxide. <i>Journal of Physical Chemistry A</i> , 2007 , 111, 4333-9	2.8	29
71	Self-Assembly of Novel Mesoporous Manganese Oxide Nanostructures and Their Application in Oxidative Decomposition of Formaldehyde. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 18033-18038	3.8	224
70	Hydrogen promotes the selective catalytic reduction of NOx by ethanol over Ag/Al2O3. <i>Catalysis Communications</i> , 2007 , 8, 187-192	3.2	36
69	A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. <i>Catalysis Today</i> , 2007 , 126, 345-350	5.3	235
68	Promotion effect of residual K on the decomposition of N2O over cobaltDerium mixed oxide catalyst. <i>Catalysis Today</i> , 2007 , 126, 449-455	5.3	79
67	An integrated system of biological and catalytic oxidation for the removal of o-xylene from exhaust. <i>Catalysis Today</i> , 2007 , 126, 338-344	5.3	11
66	Catalytic oxidation of nitrogen monoxide over La1\(\mathbb{U}\)CexCoO3 perovskites. <i>Catalysis Today</i> , 2007 , 126, 400-405	5.3	135

65	Effect of hydrogen on reaction intermediates in the selective catalytic reduction of NOx by C3H6. <i>Applied Catalysis B: Environmental</i> , 2007 , 76, 241-247	21.8	43
64	Catalytic sterilization of Escherichia coli K 12 on Ag/Al2O3 surface. <i>Journal of Inorganic Biochemistry</i> , 2007 , 101, 817-23	4.2	32
63	Uptake and conversion of carbonyl sulfide in a lawn soil. <i>Atmospheric Environment</i> , 2007 , 41, 5697-5706	5.3	4
62	Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. <i>Applied Catalysis B: Environmental</i> , 2007 , 75, 167-174	21.8	383
61	Evidence for the formation, isomerization and decomposition of organo-nitrite and -nitro species during the NOx reduction by C3H6 on Ag/Al2O3. <i>Applied Catalysis B: Environmental</i> , 2007 , 75, 298-302	21.8	21
60	Competitive Reaction During Decomposition of Hexachlorobenzene Over Ultrafine Ca E le Composite Oxide Catalyst. <i>Catalysis Letters</i> , 2007 , 119, 142-147	2.8	26
59	Heterogeneous oxidation of carbonyl sulfide on mineral oxides. <i>Science Bulletin</i> , 2007 , 52, 2063-2071		10
58	Selective catalytic oxidation of ammonia from MAP decomposition. <i>Separation and Purification Technology</i> , 2007 , 58, 173-178	8.3	35
57	Poisoning effect of sulphate on the selective catalytic reduction of NOx by C3H6 over Ag-Pd/Al2O3. <i>Journal of Molecular Catalysis A</i> , 2007 , 266, 166-172		32
56	Catalytic performance of Ag/Al2O3-C2H5OH-Cu/Al2O3 system for the removal of NOx from diesel engine exhaust. <i>Environmental Pollution</i> , 2007 , 147, 415-21	9.3	21
55	Catalytic Decomposition of N2O over Co-M(M=La, Ce, Fe, Mn, Cu, Cr) Composite Oxide Catalysts. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2007 , 23, 664-670	3.8	7
54	Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. <i>Applied Catalysis B: Environmental</i> , 2006 , 65, 37-43	21.8	428
53	Emission reduction potential of using ethanolBiodieselBiesel fuel blend on a heavy-duty diesel engine. <i>Atmospheric Environment</i> , 2006 , 40, 2567-2574	5.3	214
52	Characteristics of carbonyl compounds emission from a diesel-engine using biodieselBthanoldiesel as fuel. <i>Atmospheric Environment</i> , 2006 , 40, 7057-7065	5.3	104
51	Effect of SO2 on the performance of Ag-Pd/Al2O3 for the selective catalytic reduction of NOx with C2H5OH. <i>Journal of Environmental Sciences</i> , 2006 , 18, 973-8	6.4	7
50	Disparate effects of SO2 on the selective catalytic reduction of NO by C2H5OH and IPA over Ag/Al2O3. <i>Catalysis Communications</i> , 2006 , 7, 657-661	3.2	9
49	Mechanism of heterogeneous oxidation of carbonyl sulfide on Al2O3: an in situ diffuse reflectance infrared fourier transform spectroscopy investigation. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 3225-3	3ð ^{:4}	25
48	Conformational analysis of sulfate species on Ag/Al2O3 by means of theoretical and experimental vibration spectra. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 8320-4	3.4	39

(2004-2006)

47	Study on Effect of SO2 on the Selective Catalytic Reduction of NOx with Propene over Ag/Al2O3 by in Situ DRIFTS. <i>Chinese Journal of Catalysis</i> , 2006 , 27, 403-407	11.3	10
46	Mechanistic Study of Selective Catalytic Reduction of NOx with C2H5OH and CH3OCH3 over Ag/Al2O3 by in Situ DRIFTS. <i>Chinese Journal of Catalysis</i> , 2006 , 27, 993-997	11.3	12
45	Activation of Pt/TiO2 Catalysts by Structural Transformation of Pt-Sites. <i>Catalysis Letters</i> , 2006 , 107, 1-4	2.8	14
44	Significant enhancement of the oxidation of CO by H2 and/or H2O on a FeO x /Pt/TiO2 catalyst. <i>Catalysis Letters</i> , 2006 , 110, 185-190	2.8	50
43	Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature. <i>Catalysis Communications</i> , 2005 , 6, 211-214	3.2	186
42	Density functional theory (DFT) and DRIFTS investigations of the formation and adsorption of enolic species on the Ag/Al2O3 surface. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 13291-5	3.4	11
41	Heterogeneous oxidation of carbonyl sulfide on atmospheric particles and alumina. <i>Environmental Science & Environmental Scien</i>	10.3	26
40	Novel Ag P d/Al2O3BiO2 for lean NOx reduction by C3H6 with high tolerance of SO2. <i>Catalysis Communications</i> , 2005 , 6, 195-200	3.2	12
39	Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties. <i>Environmental Science & Environmental Sc</i>	10.3	402
38	Conformational analysis and comparison between theoretical and experimental vibration spectra for isocyanate species on Ag/Al2O3 catalyst. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2005 , 61, 1233-8	4.4	13
37	Theoretical and experimental study on formation and adsorption of enolic species on Ag-Pd/Al2O3 catalyst. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2005 , 61, 3117-23	4.4	4
36	Emission characteristics using methyl soyate@thanol@iesel fuel blends on a diesel engine. <i>Fuel</i> , 2005 , 84, 1543-1543	7.1	134
35	Selective catalytic reduction of NOx over Ag/Al2O3 catalyst: from reaction mechanism to diesel engine test. <i>Catalysis Today</i> , 2005 , 100, 37-47	5.3	141
34	In situ DRIFTS study of the selective reduction of NOx with alcohols over Ag/Al2O3 catalyst: Role of surface enolic species. <i>Applied Catalysis B: Environmental</i> , 2005 , 61, 107-113	21.8	37
33	Elimination of formaldehyde over Cu-Al2O3 catalyst at room temperature. <i>Journal of Environmental Sciences</i> , 2005 , 17, 429-32	6.4	12
32	Removal of azo-dye Acid Red B (ARB) by adsorption and catalytic combustion using magnetic CuFe2O4 powder. <i>Applied Catalysis B: Environmental</i> , 2004 , 48, 49-56	21.8	137
31	Mechanism of the selective catalytic reduction of NOx by C2H5OH over Ag/Al2O3. <i>Applied Catalysis B: Environmental</i> , 2004 , 49, 159-171	21.8	121
30	A New Catalyst for Selective Oxidation of CO in H2: Part 1, Activation by Depositing a Large Amount of FeO x on Pt/Al2O3 and Pt/CeO2 Catalysts. <i>Catalysis Letters</i> , 2004 , 92, 115-121	2.8	55

29	Selective catalytic reduction of NOx with C3H6 over an Ag/Al2O3 catalyst with a small quantity of noble metal. <i>Catalysis Today</i> , 2004 , 93-95, 783-789	5.3	24
28	FTIR, TPD and DFT studies of intermediates on Ag/Al2O3 during the selective catalytic reduction of NO by C2H5OH. <i>Catalysis Today</i> , 2004 , 93-95, 805-809	5.3	20
27	A comparative study of Ag/Al2O3 and Cu/Al2O3 catalysts for the selective catalytic reduction of NO by C3H6. <i>Catalysis Today</i> , 2004 , 90, 191-197	5.3	64
26	Ozonation of alachlor catalyzed by Cu/Al2O3 in water. <i>Catalysis Today</i> , 2004 , 90, 291-296	5.3	69
25	Selective oxidation of ammonia over copper-silver-based catalysts. <i>Catalysis Today</i> , 2004 , 90, 263-267	5.3	46
24	Catalytic inactivation of SARS coronavirus, and yeast on solid surface. <i>Catalysis Communications</i> , 2004 , 5, 170-172	3.2	21
23	Preparation and emission characteristics of ethanol-diesel fuel blends. <i>Journal of Environmental Sciences</i> , 2004 , 16, 793-6	6.4	11
22	Adsorption and catalytic combustion of ARB on CuO-Fe2O3. Science Bulletin, 2003, 48, 2311		3
21	Novel Pd promoted Ag/Al2O3 catalyst for the selective reduction of NOx. <i>Applied Catalysis B: Environmental</i> , 2003 , 46, 365-370	21.8	49
20	The effect of ethanol blended diesel fuels on emissions from a diesel engine. <i>Atmospheric Environment</i> , 2003 , 37, 4965-4971	5.3	272
20		5·3 3·4	272
	Environment, 2003, 37, 4965-4971 Novel Enolic Surface Species Formed during Partial Oxidation of CH3CHO, C2H5OH, and C3H6on	3.4	
19	Environment, 2003, 37, 4965-4971 Novel Enolic Surface Species Formed during Partial Oxidation of CH3CHO, C2H5OH, and C3H6on Ag/Al2O3: An in Situ DRIFTS Study. <i>Journal of Physical Chemistry B</i> , 2003, 107, 13090-13092 Photoinduced charge-transfer reaction at surfaces. II.	3.4	62
19 18	Novel Enolic Surface Species Formed during Partial Oxidation of CH3CHO, C2H5OH, and C3H6on Ag/Al2O3:□An in Situ DRIFTS Study. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13090-13092 Photoinduced charge-transfer reaction at surfaces. II. HBr?Nan/LiF(001)+hv(610 nm)-Br⊠an+/LiF(001)+H(g). <i>Journal of Chemical Physics</i> , 2003 , 119, 9795-9803 Adsorption and thermally induced reactions of halocyclohexanes on a Cu3Pt(111) surface. <i>Surface</i>	3·4 3·9	62
19 18 17	Novel Enolic Surface Species Formed during Partial Oxidation of CH3CHO, C2H5OH, and C3H6on Ag/Al2O3: An in Situ DRIFTS Study. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13090-13092 Photoinduced charge-transfer reaction at surfaces. II. HBr?Nan/LiF(001)+hv(610 nm)-BrNan+/LiF(001)+H(g). <i>Journal of Chemical Physics</i> , 2003 , 119, 9795-9803 Adsorption and thermally induced reactions of halocyclohexanes on a Cu3Pt(111) surface. <i>Surface Science</i> , 2001 , 479, 213-223 Self-Limiting Heterogeneous Reactions: Bifunctional Hydrocarbon on a Bimetallic Alloy Surface.	3.4 3.9 1.8	62 2 2
19 18 17 16	Novel Enolic Surface Species Formed during Partial Oxidation of CH3CHO, C2H5OH, and C3H6on Ag/Al2O3: DAn in Situ DRIFTS Study. Journal of Physical Chemistry B, 2003, 107, 13090-13092 Photoinduced charge-transfer reaction at surfaces. II. HBr?Nan/LiF(001)+hv(610 nm)-Brillan+/LiF(001)+H(g). Journal of Chemical Physics, 2003, 119, 9795-9803 Adsorption and thermally induced reactions of halocyclohexanes on a Cu3Pt(111) surface. Surface Science, 2001, 479, 213-223 Self-Limiting Heterogeneous Reactions: DBifunctional Hydrocarbon on a Bimetallic Alloy Surface. Journal of Physical Chemistry B, 2000, 104, 12306-12314	3.4 3.9 1.8	62 2 2
19 18 17 16	Novel Enolic Surface Species Formed during Partial Oxidation of CH3CHO, C2H5OH, and C3H6on Ag/Al2O3: DAn in Situ DRIFTS Study. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 13090-13092 Photoinduced charge-transfer reaction at surfaces. II. HBr?Nan/LiF(001)+hv(610 nm)-BrBlan+/LiF(001)+H(g). <i>Journal of Chemical Physics</i> , 2003 , 119, 9795-9803 Adsorption and thermally induced reactions of halocyclohexanes on a Cu3Pt(111) surface. <i>Surface Science</i> , 2001 , 479, 213-223 Self-Limiting Heterogeneous Reactions: Diffunctional Hydrocarbon on a Bimetallic Alloy Surface. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 12306-12314 Reaction of C60 with oxygen adatoms on Pt(111). <i>Journal of Chemical Physics</i> , 1999 , 110, 1173-1179	3.4 3.9 1.8 3.4 3.9	62 2 2 3

LIST OF PUBLICATIONS

11	Reduction of lean NOx by ethanol over Ag/Al2O3 catalysts in the presence of H2O and SO2. <i>Catalysis Letters</i> , 1998 , 50, 87-91	2.8	90
10	Formation and reactivity of isocyanate (NCO) species on Ag/Al2O3. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1998 , 94, 2217-2219		85
9	Hydrogenation of carbidic carbon on the Ni(100) surface. Surface Science, 1997, 376, 310-318	1.8	10
8	Application of high-resolution electron energy loss spectroscopy to the adsorption and the photoreaction of CH2I2 and CD3OD on a MoOx thin film. <i>Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films</i> , 1995 , 13, 2689-2697	2.9	4
7	Oxygen induced direct hydrogenation of CO on Ni(100) surface. Catalysis Letters, 1994, 25, 105-113	2.8	2
6	Off-normal emission of N2 produced by desorption mediated reaction of NO on Pd(110) surface. <i>Surface Science</i> , 1994 , 315, L973-L976	1.8	26
5	Reduction of CO2with H2O on TiO2(100) and TiO2(110) Single Crystals under UV-irradiation. <i>Chemistry Letters</i> , 1994 , 23, 855-858	1.7	51
4	Formation of CHx species on a Ni(100) surface by the hydrogenation of carbidic carbon. <i>Surface Science</i> , 1993 , 283, 117-120	1.8	9
3	Spectroscopic evidence for the formation of CHx species in the hydrogenation of carbidic carbon on Ni(100). <i>Catalysis Letters</i> , 1992 , 16, 407-412	2.8	11
2	Cocatalyst Modification of AgTaO3 Photocatalyst for Conversion of Carbon Dioxide with Water. Journal of Physical Chemistry C,	3.8	1
1	Nano-sized Ag rather than single-atom Ag determines CO oxidation activity and stability. <i>Nano Research</i> ,1	10	6