Neil Ravenscroft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1665746/publications.pdf

Version: 2024-02-01

516710 454955 1,076 63 16 30 citations h-index g-index papers 63 63 63 1125 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Epidemic meningitis due to Group A Neisseria meningitidis in the African meningitis belt: A persistent problem with an imminent solution. Vaccine, 2009, 27, B13-B19.	3.8	126
2	The predominant polyphenol in the leaves of the resurrection plant Myrothamnus flabellifolius, 3,4,5 tri-O-galloylquinic acid, protects membranes against desiccation and free radical-induced oxidation. Biochemical Journal, 2005, 385, 301-308.	3.7	111
3	Size fractionation of bacterial capsular polysaccharides for their use in conjugate vaccines. Vaccine, 1999, 17, 1251-1263.	3.8	62
4	Structural analysis of O-polysaccharide chains extracted from different Salmonella Typhimurium strains. Carbohydrate Research, 2014, 385, 1-8.	2.3	61
5	Development of a new method for the quantitative analysis of the extracellular polysaccharide of Neisseria meningitidis serogroup A by use of high-performance anion-exchange chromatography with pulsed-amperometric detection. Vaccine, 2001, 19, 1989-1997.	3.8	43
6	Structural Analysis of Fructans from Agave americana Grown in South Africa for Spirit Production. Journal of Agricultural and Food Chemistry, 2009, 57, 3995-4003.	5.2	39
7	Synthesis of structures corresponding to the capsular polysaccharide of Neisseria meningitidis group A. Organic and Biomolecular Chemistry, 2005, 3, 3782.	2.8	36
8	Desiccation-induced ultrastructural and biochemical changes in the leaves of the resurrection plant Myrothamnus flabellifolia. Australian Journal of Botany, 2007, 55, 482.	0.6	36
9	Size determination of bacterial capsular oligosaccharides used to prepare conjugate vaccines against Neisseria meningitidis groups Y and W135. Vaccine, 2005, 23, 1887-1899.	3.8	35
10	Purification and characterization of a <i>Shigella</i> conjugate vaccine, produced by glycoengineering <i>Escherichia coli</i> . Glycobiology, 2016, 26, cwv077.	2.5	35
11	Characterization and immunogenicity of a Shigella flexneri 2a O-antigen bioconjugate vaccine candidate. Glycobiology, 2019, 29, 669-680.	2.5	28
12	Structure of the sialic acid-containing O-specific polysaccharide from Salmonella enterica serovar Toucra O48 lipopolysaccharide. FEBS Journal, 2000, 267, 3160-3167.	0.2	26
13	Conformations of Neisseria meningitidis serogroup A and X polysaccharides: The effects of chain length and O-acetylation. Carbohydrate Research, 2018, 465, 44-51.	2.3	25
14	O-acetylation of typhoid capsular polysaccharide confers polysaccharide rigidity and immunodominance by masking additional epitopes. Vaccine, 2019, 37, 3866-3875.	3.8	24
15	Capsular polysaccharide conformations in pneumococcal serotypes 19F and 19A. Carbohydrate Research, 2015, 406, 27-33.	2.3	20
16	Genetic and structural elucidation of capsular polysaccharides from Streptococcus pneumoniae serotype 23A and 23B, and comparison to serotype 23F. Carbohydrate Research, 2017, 450, 19-29.	2.3	18
17	Structure of the capsular polysaccharide of the KPC-2-producing Klebsiella pneumoniae strain KK207-2 and assignment of the glycosyltransferases functions. International Journal of Biological Macromolecules, 2019, 130, 536-544.	7.5	17
18	Conformational properties of two exopolysaccharides produced by Inquilinus limosus, a cystic fibrosis lung pathogen. Carbohydrate Research, 2012, 350, 40-48.	2.3	16

#	Article	IF	Citations
19	Cross-protection in Neisseria meningitidis serogroups Y and W polysaccharides: A comparative conformational analysis. Carbohydrate Research, 2017, 446-447, 40-47.	2.3	15
20	The use of bacteriophage-mediated depolymerisation in investigations of the structure of the capsular polysaccharide from klebsiella serotype K71. Carbohydrate Research, 1990, 200, 409-428.	2.3	14
21	Streptococcus pneumoniae serotype 15B polysaccharide conjugate elicits a cross-functional immune response against serotype 15C but not 15A. Vaccine, 2022, 40, 4872-4880.	3.8	14
22	Conformational studies of the capsular polysaccharide produced by Neisseria meningitidis group A. Carbohydrate Research, 2009, 344, 940-943.	2.3	13
23	Comparative simulation of pneumococcal serogroup 19 polysaccharide repeating units with two carbohydrate force fields. Carbohydrate Research, 2014, 390, 20-27.	2.3	13
24	Structural aspects of 3-O- \hat{l}_{\pm} -d-galactopyranosyl-l-arabinose and the corresponding substituted l-arabinitol. Carbohydrate Research, 1988, 176, 300-305.	2.3	12
25	Bioanalysis of meningococcal vaccines. Bioanalysis, 2010, 2, 343-361.	1.5	12
26	Conformation and Cross-Protection in Group B Streptococcus Serotype III and Streptococcus pneumoniae Serotype 14: A Molecular Modeling Study. Pharmaceuticals, 2019, 12, 28.	3.8	12
27	Malic Acid Supplementation Increases Urinary Citrate Excretion and Urinary pH: Implications for the Potential Treatment of Calcium Oxalate Stone Disease. Journal of Endourology, 2014, 28, 229-236.	2.1	11
28	Burkholderia cenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling. International Journal of Molecular Sciences, 2020, 21, 1702.	4.1	11
29	The development and characterization of an E. coli O25B bioconjugate vaccine. Glycoconjugate Journal, 2021, 38, 421-435.	2.7	11
30	Bacteriophage-associated lyase activity against Klebsiella serotype K64 capsular polysaccharide. Carbohydrate Research, 1987, 167, 257-267.	2.3	10
31	Structural investigation of the capsular polysaccharide produced by a novel Klebsiella serotype (SK1). Location of O-acetyl substituents using NMR and MS techniques. Carbohydrate Research, 1993, 244, 325-340.	2.3	10
32	Bacteriophage degradation of Klebsiella K30 capsular polysaccharide. An NMR investigation of the 3,4-pyruvated galactose-containing repeating oligosaccharide. Carbohydrate Research, 1994, 254, 333-340.	2.3	10
33	Lessons Learned and Future Challenges in the Design and Manufacture of Glycoconjugate Vaccines. ACS Symposium Series, 2018, , 323-385.	0.5	10
34	Conformational and Immunogenicity Studies of the Shigella flexneri Serogroup 6 O-Antigen: The Effect of O-Acetylation. Vaccines, 2021, 9, 432.	4.4	10
35	Glycoconjugate Vaccines. , 2015, , 301-381.		9
36	The Role of Molecular Modeling in Predicting Carbohydrate Antigen Conformation and Understanding Vaccine Immunogenicity. ACS Symposium Series, 2018, , 139-173.	0.5	9

#	Article	IF	CITATIONS
37	Effects of Glucosylation and O-Acetylation on the Conformation of Shigella flexneri Serogroup 2 O-Antigen Vaccine Targets. Journal of Physical Chemistry B, 2020, 124, 2806-2814.	2.6	9
38	Complete Structural Elucidation of an Oxidized Polysialic Acid Drug Intermediate by Nuclear Magnetic Resonance Spectroscopy. Bioconjugate Chemistry, 2014, 25, 665-676.	3.6	8
39	Carbohydrate Force Fields: The Role of Small Partial Atomic Charges in Preventing Conformational Collapse. Journal of Chemical Theory and Computation, 2022, 18, 1156-1172.	5. 3	8
40	Modeling the conformations of Neisseria meningitidis serogroup a CPS and a carba-analogue: Implications for vaccine development. Carbohydrate Research, 2019, 486, 107838.	2.3	7
41	Enclathration of Picoline Isomers by (<i>rac</i>)-TADDOLs: Structures, Selectivity, and Thermal Analysis. Crystal Growth and Design, 2019, 19, 1880-1887.	3.0	7
42	Evaluation of Critical Quality Attributes of a Pentavalent (A, C, Y, W, X) Meningococcal Conjugate Vaccine for Global Use. Pathogens, 2021, 10, 928.	2.8	7
43	Molecular Modeling of the Shigella flexneri Serogroup 3 and 5 O-Antigens and Conformational Relationships for a Vaccine Containing Serotypes 2a and 3a. Vaccines, 2020, 8, 643.	4.4	6
44	3-Deoxy-Octulosonic-Acid-Containing Hexasaccharide Fragment of Unusual Core Type Isolated from Hafnia alvei 2 Lipopolysaccharide. FEBS Journal, 1995, 227, 889-896.	0.2	6
45	Use of NMR as an analytical tool in the process development of conjugate vaccines against Haemophilus influenzae type b (Hib) and meningococcal serogroup A (MenA). Biologicals, 2019, 62, 102-106.	1.4	5
46	Mechanistic Study of Potent Fluorinated EGFR Kinase Inhibitors with a Quinazoline Scaffold against L858R/T790M/C797S Resistance Mutation: Unveiling the Fluorine Substituent Cooperativity Effect on the Inhibitory Activity. Journal of Physical Chemistry B, 2020, 124, 5813-5824.	2.6	5
47	The biofilm of Burkholderia cenocepacia H111 contains an exopolysaccharide composed of l-rhamnose and l-mannose: Structural characterization and molecular modelling. Carbohydrate Research, 2021, 499, 108231.	2.3	5
48	Characterization of the Salmonella Typhimurium core oligosaccharide and its reducing end 3-deoxy-d-manno-oct-2-ulosonic acid used for conjugate vaccine production. Carbohydrate Research, 2019, 481, 43-51.	2.3	4
49	Cross-reactivity of Haemophilus influenzae type a and b polysaccharides: molecular modeling and conjugate immunogenicity studies. Glycoconjugate Journal, 2021, 38, 735-746.	2.7	4
50	Two Dimensional NMR Study of Aspidospermine. Spectroscopy Letters, 1993, 26, 707-719.	1.0	3
51	Intestinal permeability in subjects from two different race groups with diverse stone-risk profiles. Urolithiasis, 2013, 41, 111-117.	2.0	3
52	A Mechanistic Study of a Potent and Selective Epidermal Growth Factor Receptor Inhibitor against the L858R/T790M Resistance Mutation. Biochemistry, 2019, 58, 4246-4259.	2.5	3
53	Separation and Resolution of Methylcyclohexanones by Enclathration with Deoxycholic Acid. Crystal Growth and Design, 2019, 19, 3962-3968.	3.0	3
54	Preferential enclathration of lutidine isomers by diol-hosts. Journal of Molecular Structure, 2019, 1181, 636-644.	3.6	3

#	Article	IF	Citations
55	Molecular modeling provides insights into the loading of sialic acidâ€containing antigens onto CRM197: the role of chain flexibility in conjugation efficiency and glycoconjugate architecture. Glycoconjugate Journal, 2021, 38, 411-419.	2.7	3
56	Deciphering the Mechanism of Binding Selectivity of Chlorofluoroacetamide-Based Covalent Inhibitors toward L858R/T790M Resistance Mutation. Journal of Chemical Information and Modeling, 2022, , .	5.4	3
57	Selective enclathration of xylenols: synergistic effects of mixed hosts. CrystEngComm, 2020, 22, 7389-7398.	2.6	2
58	Characterisation of a new cell wall teichoic acid produced by Listeria innocua $\mathring{A}\frac{1}{2}M39$ and analysis of its biosynthesis genes. Carbohydrate Research, 2022, 511, 108499.	2.3	2
59	Partial depolymerization of capsular polysaccharides isolated from Streptococcus pneumoniae serotype 2 by various methods. Carbohydrate Research, 2022, 512, 108503.	2.3	2
60	Rapid generation of Shigella flexneri GMMA displaying natural or new and cross-reactive O-Antigens. Npj Vaccines, 2022, 7, .	6.0	2
61	NMR characterization of bacterial glycans and glycoconjugate vaccines. , 2020, , 239-281.		1
62	Composition and inhibitory properties of endogenous urinary GAGS are different in subjects from two race groups with different occurrence rates of kidney stones: Pilot studies provide unique evidence in support of an inhibitory role for this group of compounds. Clinica Chimica Acta, 2022, 525, 84-90.	1.1	1
63	Theoretical and laboratory investigations of the effects of hydroxyproline ingestion on the metabolic and physicochemical risk factors for calcium oxalate kidney stone formation in a small group of healthy subjects. International Urology and Nephrology, 2019, 51, 1121-1127.	1.4	0