List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1665412/publications.pdf Version: 2024-02-01

113 papers	15,916 citations	47409 49 h-index	28425 109 g-index
113	113	113	16028
all docs	docs citations	times ranked	citing authors

DUK-HEE KANC

#	Article	IF	CITATIONS
1	Revisiting glomerular hyperfiltration and examining the concept of high dietary protein-related nephropathy in athletes and bodybuilders. Current Opinion in Nephrology and Hypertension, 2022, 31, 18-25.	1.0	4
2	Early fluid management affects short-term mortality in patients with end-stage kidney disease undergoing chronic hemodialysis and requiring continuous renal replacement therapy. BMC Nephrology, 2022, 23, 102.	0.8	2
3	Comparison of Different Types of Oral Adsorbent Therapy in Patients with Chronic Kidney Disease: A Multicenter, Randomized, Phase IV Clinical Trial. Yonsei Medical Journal, 2021, 62, 41.	0.9	3
4	Fructose in the kidney: from physiology to pathology. Kidney Research and Clinical Practice, 2021, 40, 527-541.	0.9	7
5	Association of Mineral Bone Disorder With Decline in Residual Kidney Function in Incident Hemodialysis Patients. Journal of Bone and Mineral Research, 2020, 35, 317-325.	3.1	8
6	Eosinophil count and mortality risk in incident hemodialysis patients. Nephrology Dialysis Transplantation, 2020, 35, 1032-1042.	0.4	5
7	Reply to â€~The case for evidence-based medicine for the association between hyperuricaemia and CKD'. Nature Reviews Nephrology, 2020, 16, 422-423.	4.1	2
8	Hyperuricemia in Kidney Disease: A Major Risk Factor for Cardiovascular Events, Vascular Calcification, and Renal Damage. Seminars in Nephrology, 2020, 40, 574-585.	0.6	43
9	Loosening of the mesothelial barrier as an early therapeutic target to preserve peritoneal function in peritoneal dialysis. Kidney Research and Clinical Practice, 2020, 39, 136-144.	0.9	16
10	The case for uric acid-lowering treatment in patients with hyperuricaemia and CKD. Nature Reviews Nephrology, 2019, 15, 767-775.	4.1	122
11	The interactive effects of input and output on managing fluid balance in patients with acute kidney injury requiring continuous renal replacement therapy. Critical Care, 2019, 23, 329.	2.5	4
12	Uric acid induced the phenotype transition of vascular endothelial cells <i>via</i> induction of oxidative stress and glycocalyx shedding. FASEB Journal, 2019, 33, 13334-13345.	0.2	54
13	Paricalcitol attenuates TGFâ€Î²1–induced phenotype transition of human peritoneal mesothelial cells (HPMCs) <i>via</i> modulation of oxidative stress and NLRP3 inflammasome. FASEB Journal, 2019, 33, 3035-3050.	0.2	33
14	Physicians' perceptions of asymptomatic hyperuricemia in patients with chronic kidney disease: A questionnaire survey. Kidney Research and Clinical Practice, 2019, 38, 373-381.	0.9	4
15	Tannic acid attenuates the formation of cancer stem cells by inhibiting NF-κB-mediated phenotype transition of breast cancer cells. American Journal of Cancer Research, 2019, 9, 1664-1681.	1.4	6
16	Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. Journal of Hepatology, 2018, 68, 1063-1075.	1.8	617
17	SP662 THE DISCREPANCY IN THE PREDICTABILITY OF SUBJECTIVE GLOBAL ASSESSMENT FOR MORTALITY ACCORDING TO DIALYSIS VINTAGE IN HEMODIALYSIS PATIENTS. Nephrology Dialysis Transplantation, 2018, 33, i569-i569.	0.4	0
18	Gender-specific discrepancy in subjective global assessment for mortality in hemodialysis patients. Scientific Reports, 2018, 8, 17846.	1.6	8

#	Article	IF	CITATIONS
19	Factors Associated with Early Mortality in Critically Ill Patients Following the Initiation of Continuous Renal Replacement Therapy. Journal of Clinical Medicine, 2018, 7, 334.	1.0	23
20	FP233THE PROTECTIVE EFFECT OF KLOTHO AGAINST CONTRAST ASSOCIATED ACUTE KIDNEY INJURY VIA THE ANTIOXIDATIVE EFFECT. Nephrology Dialysis Transplantation, 2018, 33, i108-i108.	0.4	0
21	FP012EFFECT OF LONG-TERM TUBULAR OVEREXPRESSION OF HYPOXIA-INDUCIBLE FACTOR-2A ON THE PROGRESSIVE RENAL FIBROSIS IN CHRONIC KIDNEY DISEASE MODEL. Nephrology Dialysis Transplantation, 2018, 33, i53-i53.	0.4	1
22	FP113THE INCIDENCE RISK OF DIGESTIVE CANCER IN PATIENTS WITH PRE-DIALYTIC CHRONIC KIDNEY DISEASE: A NATIONWIDE COHORT STUDY IN KOREA. Nephrology Dialysis Transplantation, 2018, 33, i15-i15.	0.4	0
23	Association of blood pressure components with mortality and cardiovascular events in prehypertensive individuals: a nationwide population-based cohort study. Annals of Medicine, 2018, 50, 443-452.	1.5	12
24	Renal function affects hippocampal volume and cognition: The role of vascular burden and amyloid deposition. Geriatrics and Gerontology International, 2017, 17, 1899-1906.	0.7	10
25	Blood Pressure Control During Chronic Kidney Disease Progression. American Journal of Hypertension, 2017, 30, 610-616.	1.0	13
26	Selective tubular activation of hypoxia-inducible factor-2α has dual effects on renal fibrosis. Scientific Reports, 2017, 7, 11351.	1.6	30
27	Metformin ameliorates the Phenotype Transition of Peritoneal Mesothelial Cells and Peritoneal Fibrosis via a modulation of Oxidative Stress. Scientific Reports, 2017, 7, 5690.	1.6	53
28	Dementia is a risk factor for major adverse cardiac and cerebrovascular events in elderly Korean patients initiating hemodialysis: a Korean national population-based study. BMC Nephrology, 2017, 18, 128.	0.8	5
29	Screening of breast cancer stem cell inhibitors using a protein kinase inhibitor library. Cancer Cell International, 2017, 17, 25.	1.8	31
30	AST-120 Improves Microvascular Endothelial Dysfunction in End-Stage Renal Disease Patients Receiving Hemodialysis. Yonsei Medical Journal, 2016, 57, 942.	0.9	19
31	The Relationship between Magnesium and Endothelial Function in End-Stage Renal Disease Patients on Hemodialysis. Yonsei Medical Journal, 2016, 57, 1446.	0.9	15
32	Aging-associated renal disease in mice is fructokinase dependent. American Journal of Physiology - Renal Physiology, 2016, 311, F722-F730.	1.3	30
33	Technique failure in Korean incident peritoneal dialysis patients: a national population-based study. Kidney Research and Clinical Practice, 2016, 35, 245-251.	0.9	14
34	Effect of aldosterone on epithelial-to-mesenchymal transition of human peritoneal mesothelial cells. Kidney Research and Clinical Practice, 2015, 34, 83-92.	0.9	14
35	Improving Survival Rate of Korean Patients Initiating Dialysis. Yonsei Medical Journal, 2015, 56, 666.	0.9	24
36	Development of Metabolic Acidosis after Neobladder Reconstruction. The Ewha Medical Journal, 2015, 38, 98.	0.1	0

#	Article	IF	CITATIONS
37	(E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-ol Enhances Melanogenesis through Increasing Upstream Stimulating Factor-1-Mediated Tyrosinase Expression. PLoS ONE, 2015, 10, e0141988.	1.1	10
38	ABO-Incompatible Kidney Transplantation. The Ewha Medical Journal, 2015, 38, 7.	0.1	2
39	Baicalin and baicalein inhibit transforming growth factor-Î ² 1-mediated epithelial-mesenchymal transition in human breast epithelial cells. Biochemical and Biophysical Research Communications, 2015, 458, 707-713.	1.0	69
40	Endoplasmic reticulum stress as a novel target to ameliorate epithelial-to-mesenchymal transition and apoptosis of human peritoneal mesothelial cells. Laboratory Investigation, 2015, 95, 1157-1173.	1.7	35
41	Risk of major cardiovascular events among incident dialysis patients: A Korean national population-based study. International Journal of Cardiology, 2015, 198, 95-101.	0.8	39
42	An Assessment of Survival among Korean Elderly Patients Initiating Dialysis: A National Population-Based Study. PLoS ONE, 2014, 9, e86776.	1.1	16
43	Uric acid induces endothelial dysfunction by vascular insulin resistance associated with the impairment of nitric oxide synthesis. FASEB Journal, 2014, 28, 3197-3204.	0.2	164
44	A population-based approach indicates an overall higher patient mortality with peritoneal dialysis compared to hemodialysis in Korea. Kidney International, 2014, 86, 991-1000.	2.6	74
45	Interleukin-1α promotes extracellular shedding of syndecan-2 via induction of matrix metalloproteinase-7 expression. Biochemical and Biophysical Research Communications, 2014, 446, 487-492.	1.0	33
46	Renoprotective effect of red ginseng in gentamicin-induced acute kidney injury. Laboratory Investigation, 2014, 94, 1147-1160.	1.7	38
47	Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Laboratory Investigation, 2014, 94, 1114-1125.	1.7	196
48	Uric acid attenuates nitric oxide production by decreasing the interaction between endothelial nitric oxide synthase and calmodulin in human umbilical vein endothelial cells: A mechanism for uric acid-induced cardiovascular disease development. Nitric Oxide - Biology and Chemistry, 2013, 32, 36-42.	1.2	93
49	Uric acid and chronic kidney disease: which is chasing which?. Nephrology Dialysis Transplantation, 2013, 28, 2221-2228.	0.4	466
50	The extracellular domain of syndecan-2 regulates the interaction of HCT116 human colon carcinoma cells with fibronectin. Biochemical and Biophysical Research Communications, 2013, 431, 415-420.	1.0	18
51	Uric Acid-Induced Endothelial Dysfunction Is Associated with Mitochondrial Alterations and Decreased Intracellular ATP Concentrations. Nephron Experimental Nephrology, 2013, 121, e71-e78.	2.4	244
52	Effects of dexamethasone on the TGF-β1-induced epithelial-to-mesenchymal transition in human peritoneal mesothelial cells. Laboratory Investigation, 2013, 93, 194-206.	1.7	67
53	Far-infrared radiation acutely increases nitric oxide production by increasing Ca2+ mobilization and Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179. Biochemical and Biophysical Research Communications, 2013, 436, 601-606.	1.0	44
54	Inactivation of Max-interacting Protein 1 Induces Renal Cilia Disassembly through Reduction in Levels of Intraflagellar Transport 20 in Polycystic Kidney. Journal of Biological Chemistry, 2013, 288, 6488-6497.	1.6	4

#	Article	IF	CITATIONS
55	Novel function of the poly(c)-binding protein α-CP2 as a transcriptional activator that binds to single-stranded DNA sequences. International Journal of Molecular Medicine, 2013, 32, 1187-1194.	1.8	5
56	A case of membranoproliferative glomerulonephritis associated with metastatic colon cancer. Korean Journal of Internal Medicine, 2013, 28, 254.	0.7	3
57	Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress. Journal of Biological Chemistry, 2012, 287, 40732-40744.	1.6	558
58	Indoxyl sulfate-induced epithelial-to-mesenchymal transition and apoptosis of renal tubular cells as novel mechanisms of progression of renal disease. Laboratory Investigation, 2012, 92, 488-498.	1.7	62
59	Fabry disease: Biochemical, pathological and structural studies of the α-galactosidase A with E66Q amino acid substitution. Molecular Genetics and Metabolism, 2012, 105, 615-620.	0.5	42
60	Novel dual-binding function of a poly (C)-binding protein 3, transcriptional factor which binds the double-strand and single-stranded DNA sequence. Gene, 2012, 501, 33-38.	1.0	10
61	Association between vascular access failure and microparticles in hemodialysis patients. Kidney Research and Clinical Practice, 2012, 31, 38-47.	0.9	7
62	Hyperuricemia: A non-traditional risk factor for development and progression of chronic kidney disease?. Kidney Research and Clinical Practice, 2012, 31, 129-131.	0.9	3
63	Uric Acid and Chronic Kidney Disease: New Understanding of an Old Problem. Seminars in Nephrology, 2011, 31, 447-452.	0.6	76
64	A More Appropriate Cardiac Troponin T Level That Can Predict Outcomes in End-Stage Renal Disease Patients with Acute Coronary Syndrome. Yonsei Medical Journal, 2011, 52, 595.	0.9	11
65	Non-Dipper Status and Left Ventricular Hypertrophy as Predictors of Incident Chronic Kidney Disease. Journal of Korean Medical Science, 2011, 26, 1185.	1.1	22
66	Indoxyl Sulfate–Induced Endothelial Dysfunction in Patients with Chronic Kidney Disease via an Induction of Oxidative Stress. Clinical Journal of the American Society of Nephrology: CJASN, 2011, 6, 30-39.	2.2	256
67	Uric Acid. Hypertension, 2011, 58, 548-549.	1.3	36
68	Mutations of the GLA gene in Korean patients with Fabry disease and frequency of the E66Q allele as a functional variant in Korean newborns. Journal of Human Genetics, 2010, 55, 512-517.	1,1	49
69	Clinical implication of metabolic syndrome on chronic kidney disease depends on gender and menopausal status: results from the Korean National Health and Nutrition Examination Survey. Nephrology Dialysis Transplantation, 2010, 25, 469-477.	0.4	44
70	A case report of crescentic glomerulonephritis associated with Hantaan virus infection. Nephrology Dialysis Transplantation, 2010, 25, 2790-2792.	0.4	11
71	Impact of Low Glucose Degradation Product Bicarbonate/Lactate-Buffered Dialysis Solution on the Epithelial-Mesenchymal Transition of Peritoneum. American Journal of Nephrology, 2010, 31, 58-67.	1.4	30
72	Potential Role of Uric Acid as a Risk Factor for Cardiovascular Disease. Korean Journal of Internal Medicine, 2010, 25, 18.	0.7	12

#	Article	IF	CITATIONS
73	HGF and BMP-7 Ameliorate High Glucose–Induced Epithelial-to-Mesenchymal Transition of Peritoneal Mesothelium. Journal of the American Society of Nephrology: JASN, 2009, 20, 567-581.	3.0	118
74	Systemic inflammation, metabolic syndrome and progressive renal disease. Nephrology Dialysis Transplantation, 2009, 24, 1384-1387.	0.4	41
75	Uric Acid and Cardiovascular Risk. New England Journal of Medicine, 2008, 359, 1811-1821.	13.9	1,938
76	Could Uric Acid Have a Role in Acute Renal Failure?. Clinical Journal of the American Society of Nephrology: CJASN, 2007, 2, 16-21.	2.2	158
77	Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. American Journal of Clinical Nutrition, 2007, 86, 899-906.	2.2	747
78	Hormonal and cytokine effects of uric acid. Current Opinion in Nephrology and Hypertension, 2006, 15, 30-33.	1.0	59
79	Uric acid and hypertension. Current Hypertension Reports, 2006, 8, 111-115.	1.5	82
80	Uric Acid – A Uremic Toxin?. Blood Purification, 2006, 24, 67-70.	0.9	65
81	Renoprotective effect of erythropoietin (EPO): Possibly via an amelioration of renal hypoxia with stimulation of angiogenesis in the kidney. Kidney International, 2005, 67, 1683.	2.6	23
82	Role of ERK1/2 and p38 Mitogen-Activated Protein Kinases in the Regulation of Thrombospondin-1 by TGF-β1 in Rat Proximal Tubular Cells and Mouse Fibroblasts. Journal of the American Society of Nephrology: JASN, 2005, 16, 899-904.	3.0	60
83	Uric Acid–Induced C-Reactive Protein Expression: Implication on Cell Proliferation and Nitric Oxide Production of Human Vascular Cells. Journal of the American Society of Nephrology: JASN, 2005, 16, 3553-3562.	3.0	762
84	Subtle Renal Injury Is Likely a Common Mechanism for Salt-Sensitive Essential Hypertension. Hypertension, 2005, 45, 326-330.	1.3	83
85	Resurrection of Uric Acid as a Causal Risk Factor in Essential Hypertension. Hypertension, 2005, 45, 18-20.	1.3	180
86	Uric Acid Causes Vascular Smooth Muscle Cell Proliferation by Entering Cells via a Functional Urate Transporter. American Journal of Nephrology, 2005, 25, 425-433.	1.4	215
87	Uric acid and preeclampsia. Seminars in Nephrology, 2005, 25, 56-60.	0.6	74
88	Essential Hypertension, Progressive Renal Disease, and Uric Acid: A Pathogenetic Link?: Table 1 Journal of the American Society of Nephrology: JASN, 2005, 16, 1909-1919.	3.0	259
89	A unifying pathway for essential hypertension. American Journal of Hypertension, 2005, 18, 431-440.	1.0	138
90	Uric acid and chronic renal disease: Possible implication of hyperuricemia on progression of renal disease. Seminars in Nephrology, 2005, 25, 43-49.	0.6	125

#	Article	IF	CITATIONS
91	Uric acid as a mediator of endothelial dysfunction, inflammation, and vascular disease. Seminars in Nephrology, 2005, 25, 39-42.	0.6	350
92	Transplant Graft Vasculopathy: An Emerging Target for Prevention and Treatment of Renal Allograft Dysfunction. Yonsei Medical Journal, 2004, 45, 1053.	0.9	2
93	Rapamycin Inhibits Platelet-Derived Growth Factor-Induced Collagen, but Not Fibronectin, Synthesis in Rat Mesangial Cells. Yonsei Medical Journal, 2004, 45, 1121.	0.9	9
94	Hypothesis: Uric acid, nephron number, and the pathogenesis of essential hypertension. Kidney International, 2004, 66, 281-287.	2.6	201
95	TGF-β induces proangiogenic and antiangiogenic factorsvia parallel but distinct Smad pathways1. Kidney International, 2004, 66, 605-613.	2.6	140
96	The Impact of Gender on Progression of Renal Disease. American Journal of Pathology, 2004, 164, 679-688.	1.9	72
97	Is There a Pathogenetic Role for Uric Acid in Hypertension and Cardiovascular and Renal Disease?. Hypertension, 2003, 41, 1183-1190.	1.3	1,121
98	Hyperuricemia Causes Glomerular Hypertrophy in the Rat. American Journal of Nephrology, 2003, 23, 2-7.	1.4	224
99	Vascular endothelial growth factor: a new player in the pathogenesis of renal fibrosis. Current Opinion in Nephrology and Hypertension, 2003, 12, 43-49.	1.0	93
100	Tubulointerstitial disease: role of ischemia and microvascular disease. Current Opinion in Nephrology and Hypertension, 2003, 12, 233-241.	1.0	67
101	Uric Acid, Hominoid Evolution, and the Pathogenesis of Salt-Sensitivity. Hypertension, 2002, 40, 355-360.	1.3	478
102	Nitric Oxide Modulates Vascular Disease in the Remnant Kidney Model. American Journal of Pathology, 2002, 161, 239-248.	1.9	105
103	A Role for Uric Acid in the Progression of Renal Disease. Journal of the American Society of Nephrology: JASN, 2002, 13, 2888-2897.	3.0	1,109
104	Angiotensin II type 1 receptor blockade ameliorates tubulointerstitial injury induced by chronic potassium deficiency. Kidney International, 2002, 61, 951-958.	2.6	35
105	Role of the Microvascular Endothelium in Progressive Renal Disease. Journal of the American Society of Nephrology: JASN, 2002, 13, 806-816.	3.0	301
106	Impaired angiogenesis in the aging kidney: Vascular endothelial growth factor and Thrombospondin-1 in renal disease. American Journal of Kidney Diseases, 2001, 37, 601-611.	2.1	252
107	HYPERURICEMIA EXACERBATES CHRONIC CYCLOSPORINE NEPHROPATHY1. Transplantation, 2001, 71, 900-905.	0.5	112
108	Vascular endothelial growth factor (VEGF121) protects rats from renal infarction in thrombotic microangiopathy. Kidney International, 2001, 60, 1297-1308.	2.6	65

#	ARTICLE	IF	CITATIONS
109	Elevated Uric Acid Increases Blood Pressure in the Rat by a Novel Crystal-Independent Mechanism. Hypertension, 2001, 38, 1101-1106.	1.3	1,092
110	Impaired Angiogenesis in the Remnant Kidney Model. Journal of the American Society of Nephrology: JASN, 2001, 12, 1434-1447.	3.0	308
111	Impaired Angiogenesis in the Remnant Kidney Model. Journal of the American Society of Nephrology: JASN, 2001, 12, 1448-1457.	3.0	369
112	Vascular endothelial growth factor accelerates renal recovery in experimental thrombotic microangiopathy. Kidney International, 2000, 58, 2390-2399.	2.6	193
113	Impact of Nutritional Status on Serum Lipoprotein (A) Concentration in Patients Undergoing Continuous Ambulatory Peritoneal Dialysis. Peritoneal Dialysis International, 1996, 16, 241-245.	1.1	10