Jason D Heaney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1665405/publications.pdf

Version: 2024-02-01

471509 434195 1,119 33 17 31 citations h-index g-index papers 40 40 40 2052 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Identifying genetic determinants of inflammatory pain in mice using a large-scale gene-targeted screen. Pain, 2022, 163, 1139-1157.	4.2	4
2	AAV5 delivery of CRISPR-Cas9 supports effective genome editing in mouse lung airway. Molecular Therapy, 2022, 30, 238-243.	8.2	25
3	GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell, 2022, 185, 283-298.e17.	28.9	86
4	Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy., 2022, 1, 157-173.		22
5	A resource of targeted mutant mouse lines for 5,061 genes. Nature Genetics, 2021, 53, 416-419.	21.4	60
6	Testicular germ cell tumors arise in the absence of sex-specific differentiation. Development (Cambridge), 2021, 148, .	2.5	12
7	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
8	A novel de novo intronic variant in ITPR1 causes Gillespie syndrome. American Journal of Medical Genetics, Part A, 2021, 185, 2315-2324.	1.2	2
9	Perturbation of semaphorin and VEGF signaling in ACDMPV lungs due to FOXF1 deficiency. Respiratory Research, 2021, 22, 212.	3. 6	11
10	COPB2 loss of function causes a coatopathy with osteoporosis and developmental delay. American Journal of Human Genetics, 2021, 108, 1710-1724.	6.2	18
11	Soft windowing application to improve analysis of high-throughput phenotyping data. Bioinformatics, 2020, 36, 1492-1500.	4.1	9
12	A global Slc7a7 knockout mouse model demonstrates characteristic phenotypes of human lysinuric protein intolerance. Human Molecular Genetics, 2020, 29, 2171-2184.	2.9	15
13	The Deep Genome Project. Genome Biology, 2020, 21, 18.	8.8	30
14	Human and mouse essentiality screens as a resource for disease gene discovery. Nature Communications, 2020, 11, 655.	12.8	64
15	Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genetics, 2020, 16, e1009190.	3.5	19
16	Cover Image, Volume 57, Issue 3. Genesis, 2019, 57, e23289.	1.6	0
17	Bi-allelic Variants in TONSL Cause SPONASTRIME Dysplasia and a Spectrum of Skeletal Dysplasia Phenotypes. American Journal of Human Genetics, 2019, 104, 422-438.	6.2	27
18	Using CRISPR/Cas9 engineering to generate a mouse with a conditional knockout allele for the promyelocytic leukemia zinc finger transcription factor. Genesis, 2019, 57, e23281.	1.6	9

#	Article	IF	CITATIONS
19	Response to "Unexpected mutations after CRISPR–Cas9 editing in vivo― Nature Methods, 2018, 15, 235-236.	19.0	24
20	Delayed male germ cell sex-specification permits transition into embryonal carcinoma cells with features of primed pluripotency. Development (Cambridge), $2018, 145, .$	2.5	21
21	Identification of genes required for eye development by high-throughput screening of mouse knockouts. Communications Biology, 2018, 1, 236.	4.4	37
22	Comparative analysis of single-stranded DNA donors to generate conditional null mouse alleles. BMC Biology, 2018, 16, 69.	3.8	64
23	Germ cell tumors: Insights from the $\langle i \rangle$ Drosophila $\langle j \rangle$ ovary and the mouse testis. Molecular Reproduction and Development, 2017, 84, 200-211.	2.0	15
24	CRISPR/Cas9-mediated deletion of lncRNA Gm26878 in the distant Foxf1 enhancer region. Mammalian Genome, 2017, 28, 275-282.	2.2	14
25	Biallelic Variants in OTUD6B Cause an Intellectual Disability Syndrome Associated with Seizures and Dysmorphic Features. American Journal of Human Genetics, 2017, 100, 676-688.	6.2	54
26	Testicular Germ Cell Tumors and Teratomas. , 2017, , 225-267.		3
27	High-Fat Diet-Induced Complement Activation Mediates Intestinal Inflammation and Neoplasia, Independent of Obesity. Molecular Cancer Research, 2016, 14, 953-965.	3.4	38
28	Misexpression of cyclin D1 in embryonic germ cells promotes testicular teratoma initiation. Cell Cycle, 2016, 15, 919-930.	2.6	16
29	IL-33 activates tumor stroma to promote intestinal polyposis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2487-96.	7.1	141
30	Germ cell pluripotency, premature differentiation and susceptibility to testicular teratomas in mice. Development (Cambridge), 2012, 139, 1577-1586.	2.5	52
31	Deletion of eIF2beta suppresses testicular cancer incidence and causes recessive lethality in agouti-yellow mice. Human Molecular Genetics, 2009, 18, 1395-1404.	2.9	41
32	Loss of the Transmembrane but not the Soluble Kit Ligand Isoform Increases Testicular Germ Cell Tumor Susceptibility in Mice. Cancer Research, 2008, 68, 5193-5197.	0.9	73
33	Testicular Germ Cell Tumors in Mice. Methods in Molecular Biology, 2008, 450, 211-231.	0.9	19