Matthew Newman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/166479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Seasonality and the ENSO Mode in Central and East Pacific ENSO Growth and Evolution. Journal of Climate, 2022, 35, 3195-3209.	3.2	9
2	An Optimal Precursor of Northeast Pacific Marine Heatwaves and Central Pacific El Niño Events. Geophysical Research Letters, 2022, 49, .	4.0	20
3	Subseasonal Meteorological Drought Development over the Central United States during Spring. Journal of Climate, 2022, 35, 2525-2547.	3.2	7
4	Subseasonal Forecast Skill Improvement From Strongly Coupled Data Assimilation With a Linear Inverse Model. Geophysical Research Letters, 2022, 49, .	4.0	1
5	Impact of Annual Cycle on ENSO Variability and Predictability. Journal of Climate, 2021, 34, 171-193.	3.2	12
6	Subseasonal predictability of the North Atlantic Oscillation. Environmental Research Letters, 2021, 16, 044024.	5.2	18
7	Interannual to Decadal Variability of Tropical Indian Ocean Sea Surface Temperature: Pacific Influence versus Local Internal Variability. Journal of Climate, 2021, 34, 2669-2684.	3.2	10
8	Seasonal Predictability of Global and North American Coastal Sea Surface Temperature and Height Anomalies. Geophysical Research Letters, 2021, 48, e2020GL091886.	4.0	18
9	Removing the Effects of Tropical Dynamics from North Pacific Climate Variability. Journal of Climate, 2021, , 1-49.	3.2	10
10	Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. Science, 2021, 374, eaay9165.	12.6	92
11	The Continuum of Northeast Pacific Marine Heatwaves and Their Relationship to the Tropical Pacific. Geophysical Research Letters, 2021, 48, 2020GL090661.	4.0	15
12	Optimal North Pacific Blocking Precursors and Their Deterministic Subseasonal Evolution during Boreal Winter. Monthly Weather Review, 2020, 148, 739-761.	1.4	13
13	Relating CMIP5 Model Biases to Seasonal Forecast Skill in the Tropical Pacific. Geophysical Research Letters, 2020, 47, e2019GL086765.	4.0	14
14	Enhancing ENSO Prediction Skill by Combining Modelâ€Analog and Linear Inverse Models (MA‣IM). Geophysical Research Letters, 2020, 47, e2019GL085914.	4.0	6
15	Windows of Opportunity for Skillful Forecasts Subseasonal to Seasonal and Beyond. Bulletin of the American Meteorological Society, 2020, 101, E608-E625.	3.3	124
16	The Critical Role of Non-Normality in Partitioning Tropical and Extratropical Contributions to PNA Growth. Journal of Climate, 2020, 33, 6273-6295.	3.2	19
17	The GLACE-Hydrology Experiment: Effects of Land–Atmosphere Coupling on Soil Moisture Variability and Predictability. Journal of Climate, 2020, 33, 6511-6529.	3.2	9
18	Observed El NiÃ+oâ€+a NiÃ+a Asymmetry in a Linear Model. Geophysical Research Letters. 2019. 46. 9909-9919	4.0	18

2

MATTHEW NEWMAN

#	Article	IF	CITATIONS
19	Potential Reemergence of Seasonal Soil Moisture Anomalies in North America. Journal of Climate, 2019, 32, 2707-2734.	3.2	19
20	Diagnosing Secular Variations in Retrospective ENSO Seasonal Forecast Skill Using CMIP5 Modelâ€Analogs. Geophysical Research Letters, 2019, 46, 1721-1730.	4.0	36
21	A Priori Identification of Skillful Extratropical Subseasonal Forecasts. Geophysical Research Letters, 2019, 46, 12527-12536.	4.0	28
22	Skillful Climate Forecasts of the Tropical Indo-Pacific Ocean Using Model-Analogs. Journal of Climate, 2018, 31, 5437-5459.	3.2	52
23	Calculating State-Dependent Noise in a Linear Inverse Model Framework. Journals of the Atmospheric Sciences, 2018, 75, 479-496.	1.7	13
24	Advancing Science and Services during the 2015/16 El Niño: The NOAA El Niño Rapid Response Field Campaign. Bulletin of the American Meteorological Society, 2018, 99, 975-1001.	3.3	23
25	The Role of Stochastic Forcing in Generating ENSO Diversity. Journal of Climate, 2018, 31, 9125-9150.	3.2	9
26	The Extreme 2015/16 El Niño, in the Context of Historical Climate Variability and Change. Bulletin of the American Meteorological Society, 2018, 99, S16-S20.	3.3	50
27	Are we near the predictability limit of tropical Indoâ€Pacific sea surface temperatures?. Geophysical Research Letters, 2017, 44, 8520-8529.	4.0	102
28	The Pacific Decadal Oscillation, Revisited. Journal of Climate, 2016, 29, 4399-4427.	3.2	877
29	Understanding ENSO Diversity. Bulletin of the American Meteorological Society, 2015, 96, 921-938.	3.3	745
30	Investigating the Local Atmospheric Response to a Realistic Shift in the Oyashio Sea Surface Temperature Front. Journal of Climate, 2015, 28, 1126-1147.	3.2	103
31	Investigating the Role of Ocean–Atmosphere Coupling in the North Pacific Ocean. Journal of Climate, 2014, 27, 592-606.	3.2	27
32	Optimal growth of Central and East Pacific ENSO events. Geophysical Research Letters, 2014, 41, 4027-4034.	4.0	88
33	A verification framework for interannual-to-decadal predictions experiments. Climate Dynamics, 2013, 40, 245-272.	3.8	254
34	An Empirical Benchmark for Decadal Forecasts of Global Surface Temperature Anomalies. Journal of Climate, 2013, 26, 5260-5269.	3.2	90
35	Characterizing decadal to centennial variability in the equatorial Pacific during the last millennium. Geophysical Research Letters, 2013, 40, 3450-3456.	4.0	79
36	Relative Contributions of Synoptic and Low-Frequency Eddies to Time-Mean Atmospheric Moisture Transport, Including the Role of Atmospheric Rivers. Journal of Climate, 2012, 25, 7341-7361.	3.2	110

MATTHEW NEWMAN

#	Article	IF	CITATIONS
37	Reconciling disparate twentieth-century Indo-Pacific ocean temperature trends in the instrumental record. Nature Climate Change, 2012, 2, 691-699.	18.8	154
38	Decadal predictability of tropical Indo-Pacific Ocean temperature trends due to anthropogenic forcing in a coupled climate model. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	11
39	Natural variation in ENSO flavors. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	170
40	An empirical model of tropical ocean dynamics. Climate Dynamics, 2011, 37, 1823-1841.	3.8	82
41	Distinguishing the Roles of Natural and Anthropogenically Forced Decadal Climate Variability. Bulletin of the American Meteorological Society, 2011, 92, 141-156.	3.3	125
42	How Important Is Air–Sea Coupling in ENSO and MJO Evolution?. Journal of Climate, 2009, 22, 2958-2977.	3.2	86
43	The Impact of Rapid Wind Variability upon Air–Sea Thermal Coupling. Journal of Climate, 2008, 21, 621-637.	3.2	27
44	Tropical and Stratospheric Influences on Extratropical Short-Term Climate Variability. Journal of Climate, 2008, 21, 4326-4347.	3.2	25
45	The Late Fall Extratropical Response to ENSO: Sensitivity to Coupling and Convection in the Tropical West Pacific. Journal of Climate, 2008, 21, 6101-6118.	3.2	47
46	Interannual to Decadal Predictability of Tropical and North Pacific Sea Surface Temperatures. Journal of Climate, 2007, 20, 2333-2356.	3.2	148
47	The Experimental MJO Prediction Project. Bulletin of the American Meteorological Society, 2006, 87, 425-431.	3.3	50
48	Daily to Decadal Sea Surface Temperature Variability Driven by State-Dependent Stochastic Heat Fluxes. Journal of Physical Oceanography, 2006, 36, 1940-1958.	1.7	39
49	Multiplicative Noise and Non-Gaussianity: A Paradigm for Atmospheric Regimes?. Journals of the Atmospheric Sciences, 2005, 62, 1391-1409.	1.7	113
50	Stratiform Precipitation, Vertical Heating Profiles, and the Madden–Julian Oscillation. Journals of the Atmospheric Sciences, 2004, 61, 296-309.	1.7	210
51	ENSO-Forced Variability of the Pacific Decadal Oscillation. Journal of Climate, 2003, 16, 3853-3857.	3.2	582
52	Drifts induced by multiplicative red noise with application to climate. Europhysics Letters, 2003, 63, 498-504.	2.0	19
53	A Study of Subseasonal Predictability. Monthly Weather Review, 2003, 131, 1715-1732.	1.4	94
54	The Atmospheric Bridge: The Influence of ENSO Teleconnections on Air–Sea Interaction over the Global Oceans. Journal of Climate, 2002, 15, 2205-2231.	3.2	1,505

MATTHEW NEWMAN

#	Article	IF	CITATIONS
55	A Linear Model of Wintertime Low-Frequency Variability. Part I: Formulation and Forecast Skill. Journal of Climate, 2001, 14, 4474-4494.	3.2	107
56	Rossby waves in a stochastically fluctuating medium. , 2001, , 369-384.		13
57	Medium-Range Forecast Errors Associated with Active Episodes of theMadden–Julian Oscillation. Monthly Weather Review, 2000, 128, 69-86.	1.4	145
58	A linear diagnosis of the coupled extratropical ocean-atmosphere system in the GFDL GCM. Atmospheric Science Letters, 2000, 1, 14-25.	1.9	8
59	An Assessment of the NCEP, NASA, and ECMWF Reanalyses over the Tropical West Pacific Warm Pool. Bulletin of the American Meteorological Society, 2000, 81, 41-48.	3.3	87
60	Rossby Wave Propagation and the Rapid Development of Upper-Level Anomalous Anticyclones during the 1988 U.S. Drought. Journal of Climate, 1998, 11, 2491-2504.	3.2	64
61	The Impact of the Annual Cycle on the North Pacific/North American Response to Remote Low-Frequency Forcing. Journals of the Atmospheric Sciences, 1998, 55, 1336-1353.	1.7	93
62	Free Barotropic Rossby Wave Dynamics of the Wintertime Low-Frequency Flow. Journals of the Atmospheric Sciences, 1997, 54, 5-23.	1.7	23
63	Stochastic Forcing of the Wintertime Extratropical Flow. Journals of the Atmospheric Sciences, 1997, 54, 435-455.	1.7	73
64	A Caveat Concerning Singular Value Decomposition. Journal of Climate, 1995, 8, 352-360.	3.2	105
65	Maintenance of Strong Rotational Winds in Venus' Middle Atmosphere by Thermal Tides. Science, 1992, 257, 647-650.	12.6	80
66	Zonal Winds and the Angular Momentum Balance of Venus' Atmosphere within and above the Clouds. Journals of the Atmospheric Sciences, 1985, 42, 1982-1990.	1.7	21
67	Zonal Winds in the Middle Atmosphere of Venus from Pioneer Venus Radio Occultation Data. Journals of the Atmospheric Sciences, 1984, 41, 1901-1913.	1.7	83