
Ian E M Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1664174/publications.pdf Version: 2024-02-01

ΙΔΝΙ Ε Μ ΟΜΙΤΗ

#	Article	IF	CITATIONS
1	Specimen Requirements for Preeclampsia Markers. journal of applied laboratory medicine, The, 2020, 5, 605-607.	1.3	1
2	Randomized Interventional Study on Prediction of Preeclampsia/Eclampsia in Women With Suspected Preeclampsia. Hypertension, 2019, 74, 983-990.	2.7	84
3	Multi-criteria correlation of tephra deposits to source centres applied in the Auckland Volcanic Field, New Zealand. Bulletin of Volcanology, 2017, 79, 1.	3.0	23
4	Conceptual Development of a National Volcanic Hazard Model for New Zealand. Frontiers in Earth Science, 2017, 5, .	1.8	3
5	Long-lived shield volcanism within a monogenetic basaltic field: The conundrum of Rangitoto volcano, New Zealand. Bulletin of the Geological Society of America, 2016, 128, 1160-1172.	3.3	16
6	Characterization and quantification of suspended sediment sources to the Manawatu River, New Zealand. Science of the Total Environment, 2016, 543, 171-186.	8.0	48
7	Mantle heterogeneity controls on small-volume basaltic volcanism: REPLY. Geology, 2015, 43, e371-e371.	4.4	1
8	Co-located monogenetic eruptions ~200Âkyr apart driven by tapping vertically separated mantle source regions, Chagwido, Jeju Island, Republic of Korea. Bulletin of Volcanology, 2015, 77, 1.	3.0	23
9	Dynamics and pre-eruptive conditions of catastrophic, ignimbrite-producing eruptions from the Yenkahe Caldera, Vanuatu. Journal of Volcanology and Geothermal Research, 2015, 308, 39-60.	2.1	12
10	A melt-focusing zone in the lithospheric mantle preserved in the Santa Elena Ophiolite, Costa Rica. Lithos, 2015, 230, 189-205.	1.4	17
11	Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea. Bulletin of Volcanology, 2015, 77, 1.	3.0	52
12	Whole-rock geochemical reference data for Torlesse and Waipapa terranes, North Island, New Zealand. New Zealand Journal of Geology, and Geophysics, 2015, 58, 213-228.	1.8	47
13	Final Magma Storage Depth Modulation of Explosivity and Trachyte–Phonolite Genesis at an Intraplate Volcano: a Case Study from Ulleung Island, South Korea. Journal of Petrology, 2014, 55, 709-747.	2.8	41
14	Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand). Journal of Volcanology and Geothermal Research, 2014, 276, 46-63.	2.1	47
15	Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: Implications for the description of continental lava fields. Journal of Asian Earth Sciences, 2014, 84, 131-145.	2.3	58
16	High-magnesium andesites: the example of the Papuan Volcanic Arc. Geological Society Special Publication, 2014, 385, 117-135.	1.3	4
17	Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu. Bulletin of Volcanology, 2014, 76, 1.	3.0	30
18	A model for calculating eruptive volumes for monogenetic volcanoes — Implication for the Quaternary Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 2013, 266, 16-33.	2.1	109

#	Article	IF	CITATIONS
19	Asthenospheric Control of Melting Processes in a Monogenetic Basaltic System: a Case Study of the Auckland Volcanic Field, New Zealand. Journal of Petrology, 2013, 54, 2125-2153.	2.8	97
20	The chemical characterization and tectonic significance of ophiolite terrains in southeastern Papua New Guinea. Tectonics, 2013, 32, 159-170.	2.8	19
21	The Anatomy of an Andesite Volcano: a Time–Stratigraphic Study of Andesite Petrogenesis and Crustal Evolution at Ruapehu Volcano, New Zealand. Journal of Petrology, 2012, 53, 2139-2189.	2.8	103
22	Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand. Bulletin of Volcanology, 2012, 74, 2121-2137.	3.0	66
23	How Small-volume Basaltic Magmatic Systems Develop: a Case Study from the Jeju Island Volcanic Field, Korea. Journal of Petrology, 2012, 53, 985-1018.	2.8	78
24	Magma Evolution in the Primitive, Intra-oceanic Tonga Arc: Rapid Petrogenesis of Dacites at Fonualei Volcano. Journal of Petrology, 2012, 53, 1231-1253.	2.8	51
25	Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea. Lithos, 2012, 148, 337-352.	1.4	70
26	The inception and progression of melting in a monogenetic eruption: Motukorea Volcano, the Auckland Volcanic Field, New Zealand. Lithos, 2012, 155, 360-374.	1.4	67
27	Andesitic Plinian eruptions at Mt. Ruapehu: quantifying the uppermost limits of eruptive parameters. Bulletin of Volcanology, 2012, 74, 1161-1185.	3.0	23
28	Unravelling a complex volcanic history from fine-grained, intricate Holocene ashÂsequences at the Tongariro Volcanic Centre, New Zealand. Quaternary International, 2011, 246, 352-363.	1.5	63
29	Integrating records of explosive and effusive activity from proximal and distal sequences: Mt. Taranaki, New Zealand. Quaternary International, 2011, 246, 364-373.	1.5	41
30	The influence of magma plumbing complexity on monogenetic eruptions, Jeju Island, Korea. Terra Nova, 2011, 23, 70-75.	2.1	40
31	Sequential eruption of alkaline and sub-alkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 2011, 201, 126-142.	2.1	92
32	Geochemistry of the Early Miocene volcanic succession of Northland, New Zealand, and implications for the evolution of subduction in the Southwest Pacific. Journal of Volcanology and Geothermal Research, 2011, 199, 25-37.	2.1	32
33	Magmatic peridotites and pyroxenites, Andong Ultramafic Complex, Korea: Geochemical evidence for supra-subduction zone formation and extensive melt–rock interaction. Lithos, 2011, 127, 599-618.	1.4	36
34	Some challenges of monitoring a potentially active volcanic field in a large urban area: Auckland volcanic field, New Zealand. Natural Hazards, 2011, 59, 507-528.	3.4	19
35	Dynamics of melting beneath a small-scale basaltic system: a U-Th–Ra study from Rangitoto volcano, Auckland volcanic field, New Zealand. Contributions To Mineralogy and Petrology, 2011, 162, 547-563.	3.1	51
36	Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contributions To Mineralogy and Petrology, 2010, 160, 931-950.	3.1	113

#	Article	IF	CITATIONS
37	The petrology, geochronology and geochemistry of Hauhungatahi volcano, S.W. Taupo Volcanic Zone. Journal of Volcanology and Geothermal Research, 2010, 190, 179-191.	2.1	30
38	Redefining the Waitemata Basin, New Zealand: A new tectonic, magmatic, and basin evolution model at a subduction terminus in the SW Pacific. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	13
39	An assessment of the mantle and slab components in the magmas of an oceanic arc volcano: Raoul Volcano, Kermadec arc. Journal of Volcanology and Geothermal Research, 2009, 184, 437-450.	2.1	13
40	Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contributions To Mineralogy and Petrology, 2008, 155, 511-527.	3.1	87
41	Eruption episodes and magma recharge events in andesitic systems: Mt Taranaki, New Zealand. Journal of Volcanology and Geothermal Research, 2008, 177, 1063-1076.	2.1	22
42	New SW Pacific tectonic model: Cyclical intraoceanic magmatic arc construction and nearâ€coeval emplacement along the Australiaâ€Pacific margin in the Cenozoic. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	70
43	Structure and petrology of newly discovered volcanic centers in the northern Kermadec–southern Tofua arc, South Pacific Ocean. Journal of Geophysical Research, 2008, 113, .	3.3	47
44	Rapid timescales of differentiation and evidence for crustal contamination at intra-oceanic arcs: Geochemical and U–Th–Ra–Sr–Nd isotopic constraints from Lopevi Volcano, Vanuatu, SW Pacific. Earth and Planetary Science Letters, 2008, 273, 184-194.	4.4	28
45	Using titanomagnetite textures to elucidate volcanic eruption histories. Geology, 2008, 36, 31.	4.4	61
46	Improving the reliability of microprobe-based analyses of andesitic glasses for tephra correlation. Holocene, 2007, 17, 573-583.	1.7	37
47	U–Th–Ra fractionation during crustal-level andesite formation at Ruapehu volcano, New Zealand. Chemical Geology, 2007, 244, 437-451.	3.3	29
48	Further K-Ar dating and paleomagnetic study of the Auckland geomagnetic excursions. Earth, Planets and Space, 2007, 59, 755-761.	2.5	20
49	Oblique rifting along the central and southern Kermadec Arc front (30°-36°S), SW Pacific. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	13
50	Using geochemistry as a tool for correlating proximal andesitic tephra: case studies from Mt Rainier (USA) and Mt Ruapehu (New Zealand). Journal of Quaternary Science, 2007, 22, 395-410.	2.1	25
51	Transition from effusive to explosive phases in andesite eruptions — A case-study from the AD1655 eruption of Mt. Taranaki, New Zealand. Journal of Volcanology and Geothermal Research, 2007, 161, 15-34.	2.1	77
52	Link between SSZ ophiolite formation, emplacement and arc inception, Northland, New Zealand: U–Pb SHRIMP constraints; Cenozoic SW Pacific tectonic implications. Earth and Planetary Science Letters, 2006, 250, 606-632.	4.4	45
53	Palaeointensities of the Auckland geomagnetic excursions by the LTD-DHT Shaw method. Physics of the Earth and Planetary Interiors, 2006, 154, 168-179.	1.9	36
54	Petrogenesis of dacite in an oceanic subduction environment: Raoul Island, Kermadec arc. Journal of Volcanology and Geothermal Research, 2006, 156, 252-265.	2.1	56

#	Article	IF	CITATIONS
55	The Tonga–Kermadec arc and Havre–Lau back-arc system: Their role in the development of tectonic and magmatic models for the western Pacific. Journal of Volcanology and Geothermal Research, 2006, 156, 315-331.	2.1	72
56	Formation and emplacement of the Northland ophiolite, northern New Zealand: SW Pacific tectonic implications. Journal of the Geological Society, 2005, 162, 225-241.	2.1	35
57	An integrated model for the temporal evolution of andesites and rhyolites and crustal development in New Zealand's North Island. Journal of Volcanology and Geothermal Research, 2005, 140, 1-24.	2.1	157
58	Probabilistic Assessment of Vent Locations for the Next Auckland Volcanic Field Event. Mathematical Geosciences, 2005, 37, 227-242.	0.9	38
59	Petrology and Geochemistry of Intraplate Basalts in the South Auckland Volcanic Field, New Zealand: Evidence for Two Coeval Magma Suites from Distinct Sources. Journal of Petrology, 2004, 46, 473-503.	2.8	64
60	The Petrology of the Rotoiti Eruption Sequence, Taupo Volcanic Zone: an Example of Fractionation and Mixing in a Rhyolitic System. Journal of Petrology, 2004, 45, 2045-2066.	2.8	55
61	Silicic volcanism and back-arc extension related to migration of the Late Cainozoic Australian–Pacific plate boundary. Journal of Volcanology and Geothermal Research, 2004, 131, 295-306.	2.1	32
62	K-Ar ages of the Auckland geomagnetic excursions. Earth, Planets and Space, 2004, 56, 283-288.	2.5	25
63	Origin of the Northland Ophiolite, northern New Zealand: Discussion of new data and reassessment of the model. New Zealand Journal of Geology, and Geophysics, 2004, 47, 383-389.	1.8	23
64	Correspondence between glass-FT and 14C ages of silicic pyroclastic flow deposits sourced from Maninjau caldera, west-central Sumatra. Earth and Planetary Science Letters, 2004, 227, 121-133.	4.4	45
65	40Ar/39Ar geochronology of magmatic activity, magma flux and hazards at Ruapehu volcano, Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research, 2003, 120, 271-287.	2.1	102
66	The petrology of a large intra-oceanic silicic eruption: the Sandy Bay Tephra, Kermadec Arc, Southwest Pacific. Journal of Volcanology and Geothermal Research, 2003, 124, 173-194.	2.1	80
67	Felsic volcanism in the Kermadec arc, SW Pacific: crustal recycling in an oceanic setting. Geological Society Special Publication, 2003, 219, 99-118.	1.3	40
68	Tephrostratigraphy and geochemical fingerprinting of the Mangaone Subgroup tephra beds, Okataina Volcanic Centre, New Zealand. New Zealand Journal of Geology, and Geophysics, 2002, 45, 207-219.	1.8	36
69	Towed-camera investigations of shallow–intermediate water-depth submarine stratovolcanoes of the southern Kermadec arc, New Zealand. Marine Geology, 2002, 185, 207-218.	2.1	28
70	Kâ€Ar ages of early Miocene arcâ€ŧype volcanoes in northern New Zealand. New Zealand Journal of Geology, and Geophysics, 2001, 44, 285-311.	1.8	76
71	Origin of oceanic phonolites by crystal fractionation and the problem of the Daly gap: an example from Rarotonga. Contributions To Mineralogy and Petrology, 2001, 142, 336-346.	3.1	62
72	A detailed tephrostratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment. Journal of Volcanology and Geothermal Research, 2000, 100, 51-67.	2.1	96

#	Article	IF	CITATIONS
73	Geochemical fingerprinting of basaltic tephra deposits in the Auckland Volcanic Field. New Zealand Journal of Geology, and Geophysics, 2000, 43, 569-577.	1.8	31
74	Geochemistry of late Cenozoic basaltic volcanism in Northland and Coromandel, New Zealand: implications for mantle enrichment processes. Chemical Geology, 2000, 164, 219-238.	3.3	52
75	Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. Journal of Volcanology and Geothermal Research, 1999, 91, 97-120.	2.1	164
76	A fifty year perspective of magmatic evolution on Ruapehu Volcano, New Zealand: verification of open system behaviour in an arc volcano. Earth and Planetary Science Letters, 1999, 170, 301-314.	4.4	113
77	Geology, petrology, and petrogenesis of Little Barrier Island, Hauraki Gulf, New Zealand. New Zealand Journal of Geology, and Geophysics, 1999, 42, 155-168.	1.8	10
78	Multiple Sources for Sea-Rafted Loisels Pumice, New Zealand. Quaternary Research, 1998, 49, 271-279.	1.7	29
79	Volcanic geology of Rarotonga, southern Pacific Ocean. New Zealand Journal of Geology, and Geophysics, 1998, 41, 95-104.	1.8	21
80	238Uî—,230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochimica Et Cosmochimica Acta, 1997, 61, 4855-4884.	3.9	355
81	Melt generation models for the Auckland volcanic field, New Zealand: constraints from UTh isotopes. Earth and Planetary Science Letters, 1997, 149, 67-84.	4.4	53
82	Volcanic history of Macauley Island, Kermadec Ridge, New Zealand. New Zealand Journal of Geology, and Geophysics, 1996, 39, 295-308.	1.8	33
83	Basalt and Sediment Geochemistry and Magma Petrogenesis in a Transect from Oceanic Island Arc to Rifted Continental Margin Arc: the Kermadec—Hikurangi Margin, SW Pacific. Journal of Petrology, 1996, 37, 1523-1546.	2.8	139
84	Facies analysis of pyroclastic deposits within basaltic tuffâ€rings of the Auckland volcanic field, New Zealand. New Zealand Journal of Geology, and Geophysics, 1996, 39, 309-327.	1.8	32
85	Petrology of the gabbro and sheeted basaltic intrusives at North Cape, New Zealand. New Zealand Journal of Geology, and Geophysics, 1996, 39, 389-402.	1.8	21
86	Mixed deposits of complex magmatic and phreatomagmatic volcanism: an example from Crater Hill, Auckland, New Zealand. Bulletin of Volcanology, 1996, 58, 59-66.	3.0	55
87	Evolution of high-K arc magma, Egmont volcano, Taranaki, New Zealand: evidence from mineral chemistry. Journal of Volcanology and Geothermal Research, 1996, 74, 275-295.	2.1	66
88	In situ chemical fractionation in thin basaltic lava flows: examples from the Auckland volcanic field, New Zealand, and a general physical model. Journal of Volcanology and Geothermal Research, 1996, 74, 89-99.	2.1	25
89	Petrology and petrogenesis of volcanic rocks from the Taupo Volcanic Zone: a review. Journal of Volcanology and Geothermal Research, 1995, 68, 59-87.	2.1	156
90	Paleomagnetism of Young New Zealand Basalts and Longitudinal Distribution of Paleosecular Variation Journal of Geomagnetism and Geoelectricity, 1995, 47, 1011-1022.	0.9	20

#	Article	IF	CITATIONS
91	New palaeomagnetic evidence for the recent eruptive activity of Mt. Taranaki, New Zealand. Journal of Volcanology and Geothermal Research, 1994, 60, 15-27.	2.1	26
92	Kâ€Ar ages, paleomagnetism, and geochemistry of the South Auckland volcanic field, North Island, New Zealand. New Zealand Journal of Geology, and Geophysics, 1994, 37, 143-153.	1.8	54
93	Geophysical evidence for temporal and structural relationships within the monogenetic basalt volcanoes of the Auckland volcanic field, northern New Zealand. Journal of Volcanology and Geothermal Research, 1993, 57, 71-83.	2.1	42
94	The geochemistry and petrogenesis of basalts from the Taupo Volcanic Zone and Kermadec Island Arc, S.W. Pacific. Journal of Volcanology and Geothermal Research, 1993, 54, 265-290.	2.1	143
95	Geochemistry and heat transfer processes in Quaternary rhyolitic systems of The Taupo Volcanic Zone, New Zealand. Tectonophysics, 1993, 223, 213-235.	2.2	45
96	Age relationships and tectonic implications of late Cenozoic basaltic volcanism in Northland, New Zealand. New Zealand Journal of Geology, and Geophysics, 1993, 36, 385-393.	1.8	59
97	Northland ophiolite, New Zealand, and implications for plate-tectonic evolution of the southwest Pacific. Geology, 1992, 20, 149.	4.4	67
98	Petrology and dynamics of the Waimihia mixed magma eruption, Taupo Volcano, New Zealand. Journal of the Geological Society, 1992, 149, 193-207.	2.1	66
99	The Origin and Significance of Garnet Phenocrysts and Garnet-Bearing Xenoliths in Miocene Calc-alkaline Volcanics from Northland, New Zealand. Journal of Petrology, 1992, 33, 125-161.	2.8	48
100	Rare earth mobility in young arc-type volcanic rocks from northern New Zealand. Geochimica Et Cosmochimica Acta, 1992, 56, 3951-3955.	3.9	22
101	Pb-Nd-Sr isotopic compositions and trace element characteristics of young volcanic rocks from Egmont Volcano and comparisons with basalts and andesites from the Taupo Volcanic Zone, New Zealand. Geochimica Et Cosmochimica Acta, 1992, 56, 941-953.	3.9	57
102	Geophysical evidence for widespread reversely magnetised pyroclastics in the western Taupo Volcanic Zone (New Zealand). New Zealand Journal of Geology, and Geophysics, 1992, 35, 47-55.	1.8	18
103	A geomagnetic excursion in the Brunhes epoch recorded in New Zealand basalts. Earth and Planetary Science Letters, 1992, 111, 41-48.	4.4	46
104	Isotopic compositions of late Cenozoic volcanics from southeast Papua New Guinea: Evidence for multi-component sources in arc and rift environments. Chemical Geology, 1992, 97, 233-249.	3.3	33
105	The petrology, phase relations and tectonic setting of basalts from the taupo volcanic zone, New Zealand and the Kermadec Island arc - havre trough, SW Pacific. Journal of Volcanology and Geothermal Research, 1990, 43, 253-270.	2.1	79
106	Petrology of recrystallized ultramafic xenoliths from Merelava volcano, Vanuatu. Contributions To Mineralogy and Petrology, 1989, 102, 230-241.	3.1	15
107	Petrology of the Rumble seamounts, southern Kermadec Ridge, southwest Pacific. Bulletin of Volcanology, 1988, 50, 139-147.	3.0	24
108	The geochemistry of rock and water samples from Curtis Island volcano, Kermadec group, southwest Pacific. Journal of Volcanology and Geothermal Research, 1988, 34, 233-240.	2.1	22

#	Article	IF	CITATIONS
109	Late Cenozoic volcanism and extension in Eastern Papua. Geological Society Special Publication, 1984, 16, 163-171.	1.3	29
110	The Hollyford Gabbronorite — A calcalkaline cumulate. New Zealand Journal of Geology, and Geophysics, 1983, 26, 345-357.	1.8	13
111	Volcanic evolution in eastern Papua. Tectonophysics, 1982, 87, 315-333.	2.2	47
112	Strontium isotopes in Cenozoic volcanic rocks from southeastern Papua New Guinea. Lithos, 1982, 15, 199-206.	1.4	21
113	The origin of reversed geochemical zoning in the northern New Hebrides volcanic arc. Contributions To Mineralogy and Petrology, 1982, 81, 148-155.	3.1	33
114	Chemical discontinuities in Archean metavolcanic terrains and the development of Archean crust. Precambrian Research, 1980, 10, 301-311.	2.7	54
115	Geochemical evidence for paired arcs in the Permian volcanics of southern New Zealand. Contributions To Mineralogy and Petrology, 1979, 68, 285-291.	3.1	24
116	REE-fractionated trachytes and dacites from Papua New Guinea and their relationship to andesite petrogenesis. Contributions To Mineralogy and Petrology, 1979, 69, 227-233.	3.1	29
117	Delayed partial melting of subduction-modified mantle in papua new guinea. Tectonophysics, 1978, 46, 197-216.	2.2	119
118	Volcanic rock associations at convergent plate boundaries: Reappraisal of the concept using case histories from Papua New Guinea. Bulletin of the Geological Society of America, 1978, 89, 96.	3.3	66
119	Peralkaline rhyolites associated with andesitic arcs of the southwest Pacific. Earth and Planetary Science Letters, 1977, 37, 230-236.	4.4	78
120	Southeastern Papua: Generation of thick crust in a tensional environment?. Geology, 1975, 3, 117.	4.4	67
121	High-potassium intrusives from southeastern Papua. Contributions To Mineralogy and Petrology, 1972, 34, 167-176.	3.1	30
122	Seismicity and late cenozoic volcanism in parts of Papua-New Guinea. Tectonophysics, 1971, 12, 15-22.	2.2	23
123	Geology of Eastern Papua. Bulletin of the Geological Society of America, 1971, 82, 3299.	3.3	209
124	High potassium calc-alkaline rocks from Cape Nelson, eastern Papua. Contributions To Mineralogy and Petrology, 1970, 28, 259-271.	3.1	52
125	Geochemical patterns of late Cenozoic intraplate basaltic volcanism in northern New Zealand and their relationship to the behaviour of the mantle. New Zealand Journal of Geology, and Geophysics, 0, , 1-12.	1.8	7
126	Auckland Volcanic Field magmatism, volcanism, and hazard: a review. New Zealand Journal of Geology, and Geophysics, 0, , 1-22.	1.8	36