Paul J Chirik

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1664144/paul-j-chirik-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

235	17,128	74	126
papers	citations	h-index	g-index
384	19,241 ext. citations	9.8	7.55
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
235	Cobalt-Catalyzed C(sp2)ជ(sp3) SuzukiMiyaura Cross-Coupling Enabled by Well-Defined Precatalysts with L,X-Type Ligands. <i>ACS Catalysis</i> , 2022 , 12, 1905-1918	13.1	4
234	Visible-Light-Driven, Iridium-Catalyzed Hydrogen Atom Transfer: Mechanistic Studies, Identification of Intermediates, and Catalyst Improvements <i>Jacs Au</i> , 2022 , 2, 407-418		3
233	Effect of Pincer Methylation on the Selectivity and Activity in (PNP)Cobalt-Catalyzed C(sp)-H Borylation <i>Organometallics</i> , 2021 , 40, 3766-3774	3.8	O
232	Catalyst Design Principles Enabling Intermolecular Alkene-Diene [2+2] Cycloaddition and Depolymerization Reactions. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17793-17805	16.4	2
231	Oxidative Addition of Aryl and Alkyl Halides to a Reduced Iron Pincer Complex. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5928-5936	16.4	5
230	Synthesis and Asymmetric Alkene Hydrogenation Activity of C2-Symmetric Enantioenriched Pyridine Dicarbene Iron Dialkyl Complexes. <i>Organometallics</i> , 2021 , 40, 1053-1061	3.8	1
229	Synthesis, Electronic Structure, and Reactivity of a Planar Four-Coordinate, Cobalt I mido Complex. <i>Angewandte Chemie</i> , 2021 , 133, 14497-14501	3.6	1
228	Synthesis, Electronic Structure, and Reactivity of a Planar Four-Coordinate, Cobalt-Imido Complex. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14376-14380	16.4	9
227	Green Chemistry: A Framework for a Sustainable Future. <i>Organometallics</i> , 2021 , 40, 1801-1805	3.8	2
226	Green Chemistry: A Framework for a Sustainable Future. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 487-491	11	2
225	Green Chemistry: A Framework for a Sustainable Future. <i>Industrial & Discourse Industrial & Indu</i>	3.9	
224	Cobalt-Catalyzed C(sp)-C(sp) Suzuki-Miyaura Cross Coupling. <i>Organic Letters</i> , 2021 , 23, 625-630	6.2	11
223	Looking Forward to 2021: The Fabulous Forties!. Organometallics, 2021, 40, 95-97	3.8	
222	Iron-Catalyzed Vinylsilane Dimerization and Cross-Cycloadditions with 1,3-Dienes: Probing the Origins of Chemo- and Regioselectivity. <i>ACS Catalysis</i> , 2021 , 11, 1368-1379	13.1	3
221	Visible-Light-Enhanced Cobalt-Catalyzed Hydrogenation: Switchable Catalysis Enabled by Divergence between Thermal and Photochemical Pathways. <i>ACS Catalysis</i> , 2021 , 11, 1351-1360	13.1	15
220	Ligand Substitution and Electronic Structure Studies of Bis(phosphine)Cobalt Cyclooctadiene Precatalysts for Alkene Hydrogenation. <i>Canadian Journal of Chemistry</i> , 2021 , 99, 193-201	0.9	2
219	Pioneers and Influencers: A Profile of Dr. Kenrick Lewis. <i>Organometallics</i> , 2021 , 40, 459-462	3.8	

(2020-2021)

218	A Tutorial on Selectivity Determination in C(sp)-H Oxidative Addition of Arenes by Transition Metal Complexes. <i>Organometallics</i> , 2021 , 40, 813-831	3.8	7
217	Visible light enables catalytic formation of weak chemical bonds with molecular hydrogen. <i>Nature Chemistry</i> , 2021 , 13, 969-976	17.6	9
216	Mechanistic Origins of Regioselectivity in Cobalt-Catalyzed C(sp)-H Borylation of Benzoate Esters and Arylboronate Esters. <i>CheM</i> , 2021 , 7, 237-254	16.2	6
215	Iron-catalysed synthesis and chemical recycling of telechelic 1,3-enchained oligocyclobutanes. Nature Chemistry, 2021, 13, 156-162	17.6	14
214	40 Years of Organometallics. Organometallics, 2021, 40, 4035-4040	3.8	
213	Beyond Ammonia: Nitrogen-Element Bond Forming Reactions with Coordinated Dinitrogen. <i>Chemical Reviews</i> , 2020 , 120, 5637-5681	68.1	57
212	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133	5.6	
211	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498	4.3	
21 0	Confronting Racism in Chemistry Journals. <i>Organometallics</i> , 2020 , 39, 2331-2333	3.8	
209	Synthesis and Reactivity of Organometallic Intermediates Relevant to Cobalt-Catalyzed Hydroformylation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8912-8916	16.4	10
208	Pioneers and Influencers in Organometallic Chemistry: A Profile of Professor Jay Kochi. <i>Organometallics</i> , 2020 , 39, 775-777	3.8	
207	C(sp)-H Borylation of Heterocycles by Well-Defined Bis(silylene)pyridine Cobalt(III) Precatalysts: Pincer Modification, C(sp)-H Activation and Catalytically Relevant Intermediates. <i>Organometallics</i> , 2020 , 39, 2763-2773	3.8	11
206	Update to Our Reader, Reviewer, and Author CommunitiesApril 2020. <i>Energy & Description</i> 2020, 34, 5107-5108	4.1	
205	Cobalt-Catalyzed Asymmetric Hydrogenation of 即Jnsaturated Carboxylic Acids by Homolytic H Cleavage. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5272-5281	16.4	45
204	Investigations into the Mechanism of Inter- and Intramolecular Iron-Catalyzed [2 + 2] Cycloaddition of Alkenes. <i>Journal of the American Chemical Society</i> , 2020 , 142, 5314-5330	16.4	21
203	2020 Vision: A Year for Pioneers and Influencers of Organometallic Chemistry. <i>Organometallics</i> , 2020 , 39, 1-2	3.8	2
202	Ketone Synthesis from Benzyldiboronates and Esters: Leveraging Boryl Carbanions for Carbon-Carbon Bond Formation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2429-2437	16.4	20
201	A Boron Activating Effect Enables Cobalt-Catalyzed Asymmetric Hydrogenation of Sterically Hindered Alkenes. <i>Journal of the American Chemical Society</i> , 2020 , 142, 3923-3930	16.4	28

200	Synthesis and Reactivity of Organometallic Intermediates Relevant to Cobalt-Catalyzed Hydroformylation. <i>Angewandte Chemie</i> , 2020 , 132, 8997-9001	3.6	
199	Catalytic Hydrogenation of a Manganese(V) Nitride to Ammonia. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9518-9524	16.4	11
198	Update to Our Reader, Reviewer, and Author Communities April 2020. Organometallics, 2020, 39, 1665-1	l 6 666	
197	Confronting Racism in Chemistry Journals. <i>Journal of Chemical Health and Safety</i> , 2020 , 27, 198-200	1.7	
196	Direct Observation of Transmetalation from a Neutral Boronate Ester to a Pyridine(diimine) Iron Alkoxide. <i>Organometallics</i> , 2020 , 39, 201-205	3.8	6
195	Pyridine(diimine) Iron Diene Complexes Relevant to Catalytic [2+2]-Cycloaddition Reactions. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 404-416	5.6	5
194	Determination of the N-H Bond Dissociation Free Energy in a Pyridine(diimine)molybdenum Complex Prepared by Proton-Coupled Electron Transfer. <i>Inorganic Chemistry</i> , 2020 , 59, 15394-15401	5.1	4
193	C(sp2) Activation with Pyridine Dicarbene Iron Dialkyl Complexes: Hydrogen Isotope Exchange of Arenes Using Benzene-d6 as a Deuterium Source. <i>ACS Catalysis</i> , 2020 , 10, 8640-8647	13.1	18
192	Synthesis of Cationic, Dimeric Diimine Nickel Hydride Complexes and Relevance to the Polymerization of Olefins. <i>Organometallics</i> , 2020 , 39, 2630-2635	3.8	6
191	Coordination-Induced NH Bond Weakening in a Molybdenum Pyrrolidine Complex: Isotopic Labeling Provides Insight into the Pathway for H2 Evolution. <i>Organometallics</i> , 2020 , 39, 3050-3059	3.8	3
190	Using nature's blueprint to expand catalysis with Earth-abundant metals. Science, 2020, 369,	33.3	124
189	Dietmar Seyferth (1929\(\textit{1020}\)): A Foundational and Enduring Legacy at Organometallics. Organometallics, 2020 , 39, 3061-3063	3.8	
188	Cobalt-Catalyzed Borylation of Fluorinated Arenes: Thermodynamic Control of C(sp)-H Oxidative Addition Results in -to-Fluorine Selectivity. <i>Journal of the American Chemical Society</i> , 2019 , 141, 15378-1	15389	26
187	[4+4]-Cycloaddition of Isoprene for the Production of High-Performance Bio-Based Jet Fuel. <i>Green Chemistry</i> , 2019 , 21, 5616-5623	10	17
186	Hydrogenation of -Heteroarenes Using Rhodium Precatalysts: Reductive Elimination Leads to Formation of Multimetallic Clusters. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17900-17908	16.4	33
185	Syntheses and Catalytic Hydrogenation Performance of Cationic Bis(phosphine) Cobalt(I) Diene and Arene Compounds. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 9194-9198	16.4	45
184	Syntheses and Catalytic Hydrogenation Performance of Cationic Bis(phosphine) Cobalt(I) Diene and Arene Compounds. <i>Angewandte Chemie</i> , 2019 , 131, 9292-9296	3.6	23
183	Enabling Two-Electron Pathways with Iron and Cobalt: From Ligand Design to Catalytic Applications. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9106-9123	16.4	65

(2018-2019)

182	Regio- and Diastereoselective Iron-Catalyzed [4+4]-Cycloaddition of 1,3-Dienes. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8557-8573	16.4	40
181	Organometallics Global Enterprise. Organometallics, 2019, 38, 1827-1827	3.8	
180	Evaluation of excited state bond weakening for ammonia synthesis from a manganese nitride: stepwise proton coupled electron transfer is preferred over hydrogen atom transfer. <i>Chemical Communications</i> , 2019 , 55, 5595-5598	5.8	11
179	Pyridine(diimine) Chelate Hydrogenation in a Molybdenum Nitrido Ethylene Complex. <i>Organometallics</i> , 2019 , 38, 1682-1687	3.8	10
178	N-H Bond Formation in a Manganese(V) Nitride Yields Ammonia by Light-Driven Proton-Coupled Electron Transfer. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4795-4799	16.4	29
177	Synthesis, Structure, and Hydrogenolysis of Pyridine Dicarbene Iron Dialkyl Complexes. <i>Organometallics</i> , 2019 , 38, 3159-3168	3.8	11
176	Remote, Diastereoselective Cobalt-Catalyzed Alkene Isomerization Hydroboration: Access to Stereodefined 1,3-Difunctionalized Indanes. <i>ACS Catalysis</i> , 2019 , 9, 9034-9044	13.1	22
175	Titelbild: Syntheses and Catalytic Hydrogenation Performance of Cationic Bis(phosphine) Cobalt(I) Diene and Arene Compounds (Angew. Chem. 27/2019). <i>Angewandte Chemie</i> , 2019 , 131, 9041-9041	3.6	0
174	Ni(I)-X Complexes Bearing a Bulky Diimine Ligand: Synthesis, Structure, and Superior Catalytic Performance in the Hydrogen Isotope Exchange in Pharmaceuticals. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5034-5044	16.4	63
173	Oxidative Addition of Dihydrogen, Boron Compounds, and Aryl Halides to a Cobalt(I) Cation Supported by a Strong-Field Pincer Ligand. <i>Organometallics</i> , 2019 , 38, 1081-1090	3.8	19
172	Organometallics in 2019: It is Elementary. Organometallics, 2019, 38, 195-197	3.8	5
171	Exploring the Alcohol Stability of Bis(phosphine) Cobalt Dialkyl Precatalysts in Asymmetric Alkene Hydrogenation. <i>Organometallics</i> , 2019 , 38, 149-156	3.8	16
170	Dinitrogen Coupling to a Terpyridine-Molybdenum Chromophore Is Switched on by Fermi Resonance. <i>CheM</i> , 2019 , 5, 402-416	16.2	22
169	Exploring C(sp3)ជ(sp3) reductive elimination from an isolable iron metallacycle. <i>Polyhedron</i> , 2019 , 159, 308-317	2.7	6
168	Expanding the Boundaries of Organometallic Chemistry. Organometallics, 2018, 37, 835-836	3.8	5
167	Interconversion of Molybdenum Imido and Amido Complexes by Proton-Coupled Electron Transfer. <i>Angewandte Chemie</i> , 2018 , 130, 2246-2250	3.6	8
166	Synthesis and Electronic Structure Diversity of Pyridine(diimine)iron Tetrazene Complexes. <i>Inorganic Chemistry</i> , 2018 , 57, 9634-9643	5.1	16
165	Organometallics in 2018. Organometallics, 2018, 37, 271-272	3.8	

164	Selective [1,4]-Hydrovinylation of 1,3-Dienes with Unactivated Olefins Enabled by Iron Diimine Catalysts. <i>Journal of the American Chemical Society</i> , 2018 , 140, 3443-3453	16.4	52
163	Interconversion of Molybdenum Imido and Amido Complexes by Proton-Coupled Electron Transfer. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2224-2228	16.4	36
162	Ultrafast Photophysics of a Dinitrogen-Bridged Molybdenum Complex. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6298-6307	16.4	11
161	Cobalt-catalysed alkene hydrogenation: a metallacycle can explain the hydroxyl activating effect and the diastereoselectivity. <i>Chemical Science</i> , 2018 , 9, 4977-4982	9.4	23
160	Earth-Abundant Transition Metal Catalysts for Alkene Hydrosilylation and Hydroboration: Opportunities and Assessments. <i>Nature Reviews Chemistry</i> , 2018 , 2, 15-34	34.6	365
159	Pyridine(diimine) Molybdenum-Catalyzed Hydrogenation of Arenes and Hindered Olefins: Insights into Precatalyst Activation and Deactivation Pathways. <i>ACS Catalysis</i> , 2018 , 8, 5276-5285	13.1	21
158	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry [] Organic Letters, 2018 , 20, 5075-5081	6.2	
157	Dos and DonEs: Thoughts on How To Respond to Reviewer Comments. <i>Organometallics</i> , 2018 , 37, 2655-	-2 ₉ 6855	4
156	Air-Stable Diimine Nickel Precatalysts for the Hydrogenation of Hindered, Unactivated Alkenes. <i>ACS Catalysis</i> , 2018 , 8, 342-348	13.1	52
155	Proton-Coupled Electron Transfer to a Molybdenum Ethylene Complex Yields a 卧gostic Ethyl: Structure, Dynamics and Mechanism. <i>Journal of the American Chemical Society</i> , 2018 , 140, 13817-13826	16.4	15
154	Site-Selective Nickel-Catalyzed Hydrogen Isotope Exchange in N-Heterocycles and Its Application to the Tritiation of Pharmaceuticals. <i>ACS Catalysis</i> , 2018 , 8, 10210-10218	13.1	40
153	Cobalt Pincer Complexes in Catalytic C-H Borylation: The Pincer Ligand Flips Rather Than Dearomatizes. <i>ACS Catalysis</i> , 2018 , 8, 10606-10618	13.1	26
152	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry [] <i>Journal of Organic Chemistry</i> , 2018 , 83, 9573-9579	4.2	
151	Iron-Mediated Coupling of Carbon Dioxide and Ethylene: Macrocyclic Metallalactones Enable Access to Various Carboxylates. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11589-11593	16.4	21
150	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry Inorganic Chemistry, 2018 , 57, 11299-11305	5.1	1
149	Straddling the Rooftop: Finding a Balance between Traditional and Modern Views of Chemistry. Organometallics, 2018 , 37, 2825-2831	3.8	1
148	Cobalt-catalyzed asymmetric hydrogenation of enamides enabled by single-electron reduction. <i>Science</i> , 2018 , 360, 888-893	33.3	155
147	Synthesis and Reactivity of Reduced Điimine Nickel Complexes Relevant to Acrylic Acid Synthesis. Organometallics, 2018, 37, 3389-3393	3.8	20

146	Organometallics in 2017: A Global Endeavor. Organometallics, 2017, 36, 1-4	3.8	2
145	C(sp)-H Borylation of Fluorinated Arenes Using an Air-Stable Cobalt Precatalyst: Electronically Enhanced Site Selectivity Enables Synthetic Opportunities. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2825-2832	16.4	78
144	Benzyltriboronates: Building Blocks for Diastereoselective Carbon-Carbon Bond Formation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2589-2592	16.4	76
143	Kohlenstoff-Kohlenstoff-Bindungsbildung in einem schwachen Ligandenfeld: Nutzung von Open-Shell-Bergangsmetallkatalysatoren der ersten Bergangsperiode. <i>Angewandte Chemie</i> , 2017 , 129, 5252-5265	3.6	22
142	Carbon-Carbon Bond Formation in a Weak Ligand Field: Leveraging Open-Shell First-Row Transition-Metal Catalysts. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 5170-5181	16.4	93
141	Cobalt-Catalyzed 1,1-Diboration of Terminal Alkynes: Scope, Mechanism, and Synthetic Applications. <i>Journal of the American Chemical Society</i> , 2017 , 139, 3868-3875	16.4	100
140	Ammonia Activation, H Evolution and Nitride Formation from a Molybdenum Complex with a Chemically and Redox Noninnocent Ligand. <i>Journal of the American Chemical Society</i> , 2017 , 139, 6110-6	1434	61
139	Mechanistic Studies of Cobalt-Catalyzed C(sp)-H Borylation of Five-Membered Heteroarenes with Pinacolborane. <i>ACS Catalysis</i> , 2017 , 7, 4366-4371	13.1	41
138	Determining and Understanding N-H Bond Strengths in Synthetic Nitrogen Fixation Cycles. <i>Topics in Organometallic Chemistry</i> , 2017 , 1-21	0.6	23
137	Introduction to the Virtual Issue Honoring Robert Bergman 2017 Wolf Prize in Chemistry. Organometallics, 2017, 36, 957-959	3.8	
136	Synthesis and Reactivity of Pyridine(diimine) Molybdenum Olefin Complexes: Ethylene Dimerization and Alkene Dehydrogenation. <i>Organometallics</i> , 2017 , 36, 4215-4223	3.8	14
135	Insights into Activation of Cobalt Pre-Catalysts for C()-H Functionalization. <i>Israel Journal of Chemistry</i> , 2017 , 57, 1032-1036	3.4	12
134	Cobalt-Catalyzed Stereoretentive Hydrogen Isotope Exchange of C(sp)-H Bonds. <i>ACS Catalysis</i> , 2017 , 7, 5674-5678	13.1	66
133	Communicating Science. <i>Organometallics</i> , 2017 , 36, 4339-4340	3.8	
132	Synthesis of Iron Hydride Complexes Relevant to Hydrogen Isotope Exchange in Pharmaceuticals. Organometallics, 2017 , 36, 4341-4343	3.8	30
131	Cobalt-Catalyzed C(sp2) Borylation with an Air-Stable, Readily Prepared Terpyridine Cobalt(II) Bis(acetate) Precatalyst. <i>Organometallics</i> , 2017 , 36, 142-150	3.8	61
130	Cobalt-Catalyzed C(sp(2))-H Borylation: Mechanistic Insights Inspire Catalyst Design. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10645-53	16.4	81
129	Catalytic Proton Coupled Electron Transfer from Metal Hydrides to Titanocene Amides, Hydrazides and Imides: Determination of Thermodynamic Parameters Relevant to Nitrogen Fixation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13379-13389	16.4	54

128	Coordination-induced weakening of ammonia, water, and hydrazine X-H bonds in a molybdenum complex. <i>Science</i> , 2016 , 354, 730-733	33.3	116
127	Iron-catalysed tritiation of pharmaceuticals. <i>Nature</i> , 2016 , 529, 195-9	50.4	244
126	Bench-Stable, Substrate-Activated Cobalt Carboxylate Pre-Catalysts for Alkene Hydrosilylation with Tertiary Silanes. <i>ACS Catalysis</i> , 2016 , 6, 2632-2636	13.1	115
125	Nickel-Catalyzed Asymmetric Alkene Hydrogenation of 即Jnsaturated Esters: High-Throughput Experimentation-Enabled Reaction Discovery, Optimization, and Mechanistic Elucidation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3562-9	16.4	124
124	Cobalt-Catalyzed Enantioselective Hydrogenation of Minimally Functionalized Alkenes: Isotopic Labeling Provides Insight into the Origin of Stereoselectivity and Alkene Insertion Preferences. Journal of the American Chemical Society, 2016 , 138, 3314-24	16.4	139
123	Terpyridine Molybdenum Dinitrogen Chemistry: Synthesis of Dinitrogen Complexes That Vary by Five Oxidation States. <i>Inorganic Chemistry</i> , 2016 , 55, 3117-27	5.1	45
122	Cobalt-Catalyzed Benzylic Borylation: Enabling Polyborylation and Functionalization of Remote, Unactivated C(sp(3))-H Bonds. <i>Journal of the American Chemical Society</i> , 2016 , 138, 766-9	16.4	142
121	Cationic Pyridine(diimine) Iron Tethered Alkene Complexes: Synthetic Models For Elusive Intermediates In Iron-Catalyzed Ethylene Polymerization. <i>Bulletin of Japan Society of Coordination Chemistry</i> , 2016 , 67, 19-29	0.3	4
120	Grenzen erweitern: Spaltung und Funktionalisierung von N2 jenseits von frBen Bergangsmetallen. <i>Angewandte Chemie</i> , 2016 , 128, 8022-8026	3.6	14
119	Expanding Boundaries: N2 Cleavage and Functionalization beyond Early Transition Metals. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 7892-6	16.4	59
118	Thermodynamics of N-H bond formation in bis(phosphine) molybdenum(ii) diazenides and the influence of the trans ligand. <i>Dalton Transactions</i> , 2016 , 45, 15922-15930	4.3	14
117	Insight into Transmetalation Enables Cobalt-Catalyzed Suzuki-Miyaura Cross Coupling. <i>ACS Central Science</i> , 2016 , 2, 935-942	16.8	56
116	Alkene Hydrosilylation Using Tertiary Silanes with Diimine Nickel Catalysts. Redox-Active Ligands Promote a Distinct Mechanistic Pathway from Platinum Catalysts. <i>ACS Catalysis</i> , 2016 , 6, 4105-4109	13.1	140
115	An Editorial About Elemental Analysis. <i>Organometallics</i> , 2016 , 35, 3255-3256	3.8	28
114	Ammonia synthesis by hydrogenolysis of titanium-nitrogen bonds using proton coupled electron transfer. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3498-501	16.4	55
113	Cobalt catalyzed z-selective hydroboration of terminal alkynes and elucidation of the origin of selectivity. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5855-8	16.4	186
112	ORGANIC CHEMISTRY. Iron-catalyzed intermolecular [2+2] cycloadditions of unactivated alkenes. <i>Science</i> , 2015 , 349, 960-3	33.3	143
111	Synthesis and Electronic Structure of Iron Borate Betaine Complexes as a Route to Single-Component Iron Ethylene Oligomerization and Polymerization Catalysts. <i>Organometallics</i> , 2015 , 34, 5615-5623	3.8	18

110	High-Activity Cobalt Catalysts for Alkene Hydroboration with Electronically Responsive Terpyridine and Diimine Ligands. <i>ACS Catalysis</i> , 2015 , 5, 622-626	13.1	127
109	Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands. <i>Accounts of Chemical Research</i> , 2015 , 48, 1687-95	24.3	489
108	Evaluation of Cobalt Complexes Bearing Tridentate Pincer Ligands for Catalytic CH Borylation. <i>Organometallics</i> , 2015 , 34, 1307-1320	3.8	68
107	Cobalt-Catalyzed [21] 2] Cycloadditions of Alkenes: Scope, Mechanism, and Elucidation of Electronic Structure of Catalytic Intermediates. <i>Journal of the American Chemical Society</i> , 2015 , 137, 790) 3 -14	68
106	Alkene isomerization-hydroboration promoted by phosphine-ligated cobalt catalysts. <i>Organic Letters</i> , 2015 , 17, 2716-9	6.2	152
105	A Career in Catalysis: John E. Bercaw. <i>ACS Catalysis</i> , 2015 , 5, 1747-1757	13.1	7
104	Synthesis, electronic structure and reactivity of bis(imino)pyridine iron carbene complexes: evidence for a carbene radical. <i>Chemical Science</i> , 2014 , 5, 1168-1174	9.4	67
103	Electronic Structures of Reduced Manganese, Iron, and Cobalt Complexes Bearing Redox-Active Bis(imino)pyridine Pincer Ligands 2014 , 189-212		11
102	Bis (B-Pentamethylcyclopentadienyl) Complexes of Titanium, Zirconium, and Hafnium. <i>Inorganic Syntheses</i> , 2014 , 47-51		
101	Cobalt-catalyzed C-H borylation. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4133-6	16.4	227
100	Oxidative addition and CH activation chemistry with a PNP pincer-ligated cobalt complex. <i>Chemical Science</i> , 2014 , 5, 1956-1960	9.4	62
99	Bis(phosphine)cobalt dialkyl complexes for directed catalytic alkene hydrogenation. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13178-81	16.4	103
98	Bis(imino)pyridine cobalt-catalyzed dehydrogenative silylation of alkenes: scope, mechanism, and origins of selective allylsilane formation. <i>Journal of the American Chemical Society</i> , 2014 , 136, 12108-18	16.4	164
97	N-N bond cleavage of 1,2-diarylhydrazines and N-H bond formation via H-atom transfer in vanadium complexes supported by a redox-active ligand. <i>Journal of the American Chemical Society</i> , 2014 , 136, 120	95-107	44
96	Electronic Structure Determination of Pyridine N-Heterocyclic Carbene Iron Dinitrogen Complexes and Neutral Ligand Derivatives. <i>Organometallics</i> , 2014 , 33, 5423-5433	3.8	42
95	Carbon dioxide hydrosilylation promoted by cobalt pincer complexes. <i>Inorganic Chemistry</i> , 2014 , 53, 946	5 3. 5	103
94	Synthesis and Hydrogenation Activity of Iron Dialkyl Complexes with Chiral Bidentate Phosphines. <i>Organometallics</i> , 2014 , 33, 5781-5790	3.8	51
	N⊞ and Nℂ Bond Formation with an N2-Derived Dihafnium ENitrido Complex. <i>Organometallics</i> ,		

92	Four-coordinate cobalt pincer complexes: electronic structure studies and ligand modification by homolytic and heterolytic pathways. <i>Journal of the American Chemical Society</i> , 2014 , 136, 9211-24	16.4	132
91	Synthesis and Ligand Modification Chemistry of a Molybdenum Dinitrogen Complex: Redox and Chemical Activity of a Bis(imino)pyridine Ligand. <i>Angewandte Chemie</i> , 2014 , 126, 14435-14439	3.6	10
90	Synthesis and ligand modification chemistry of a molybdenum dinitrogen complex: redox and chemical activity of a bis(imino)pyridine ligand. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 142	2 16:4	51
89	Synthesis of a base-free hafnium nitride from N2 cleavage: a versatile platform for dinitrogen functionalization. <i>Journal of the American Chemical Society</i> , 2013 , 135, 11373-83	16.4	57
88	Cobalt precursors for high-throughput discovery of base metal asymmetric alkene hydrogenation catalysts. <i>Science</i> , 2013 , 342, 1076-80	33.3	285
87	Bis(imino)pyridine cobalt-catalyzed alkene isomerization-hydroboration: a strategy for remote hydrofunctionalization with terminal selectivity. <i>Journal of the American Chemical Society</i> , 2013 , 135, 19107-10	16.4	270
86	Dinitrogen Borylation with Group 4 Metallocene Complexes. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 3907-3915	2.3	16
85	Oxidation and reduction of bis(imino)pyridine iron dinitrogen complexes: evidence for formation of a chelate trianion. <i>Inorganic Chemistry</i> , 2013 , 52, 635-46	5.1	67
84	Synthesis and electronic structure of bis(imino)pyridine iron metallacyclic intermediates in iron-catalyzed cyclization reactions. <i>Journal of the American Chemical Society</i> , 2013 , 135, 4862-77	16.4	108
83	Reversible carbon-carbon bond formation induced by oxidation and reduction at a redox-active cobalt complex. <i>Inorganic Chemistry</i> , 2013 , 52, 5403-17	5.1	58
82	Highly selective bis(imino)pyridine iron-catalyzed alkene hydroboration. Organic Letters, 2013, 15, 2680	-B .2	164
81	Catalytic hydrogenation activity and electronic structure determination of bis(arylimidazol-2-ylidene)pyridine cobalt alkyl and hydride complexes. <i>Journal of the American Chemical Society</i> , 2013 , 135, 13168-84	16.4	166
80	Redox-Induced N2 Hapticity Switching in Zirconocene Dinitrogen Complexes. <i>Angewandte Chemie</i> , 2013 , 125, 5480-5484	3.6	5
79	Activation of Dinitrogen-Derived Hafnium Nitrides for Nucleophilic N?C Bond Formation with a Terminal Isocyanate. <i>Angewandte Chemie</i> , 2013 , 125, 13203-13207	3.6	11
78	Synthesis and Electronic Structure of Reduced Bis(imino)pyridine Manganese Compounds. <i>European Journal of Inorganic Chemistry</i> , 2012 , 2012, 535-545	2.3	53
77	Di- and Tetrametallic Hafnocene Oxamidides Prepared from CO-Induced N2 Bond Cleavage and Thermal Rearrangement to Hafnocene Cyanide Derivatives. <i>Organometallics</i> , 2012 , 31, 6278-6287	3.8	23
76	High-Selectivity Bis(imino)pyridine Iron Catalysts for the Hydrosilylation of 1,2,4-Trivinylcyclohexane. <i>ACS Catalysis</i> , 2012 , 2, 2169-2172	13.1	108
75	Studies into the mechanism of CO-induced N2 cleavage promoted by an ansa-hafnocene complex and C-C bond formation from an observed intermediate. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3377-86	16.4	42

74	Bis(imino)pyridine Iron Dinitrogen Compounds Revisited: Differences in Electronic Structure Between Four- and Five-Coordinate Derivatives. <i>Organometallics</i> , 2012 , 31, 2275-2285	3.8	62
73	High-Activity Iron Catalysts for the Hydrogenation of Hindered, Unfunctionalized Alkenes. <i>ACS Catalysis</i> , 2012 , 2, 1760-1764	13.1	186
72	Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. <i>Science</i> , 2012 , 335, 567-70	33.3	419
71	Side-on Dinitrogen Complexes of Titanocenes with Disubstituted Cyclopentadienyl Ligands: Synthesis, Structure, and Spectroscopic Characterization. <i>Organometallics</i> , 2012 , 31, 3672-3682	3.8	36
70	Oxidative addition of carbon-carbon bonds with a redox-active bis(imino)pyridine iron complex. <i>Journal of the American Chemical Society</i> , 2012 , 134, 17125-37	16.4	121
69	Bis(imino)pyridine iron dinitrogen compounds revisited: differences in electronic structure between four- and five-coordinate derivatives. <i>Inorganic Chemistry</i> , 2012 , 51, 3770-85	5.1	107
68	Synthesis, Electronic Structure, and Alkene Hydrosilylation Activity of Terpyridine and Bis(imino)pyridine Iron Dialkyl Complexes. <i>Organometallics</i> , 2012 , 31, 4886-4893	3.8	129
67	Enantiopure C1-symmetric bis(imino)pyridine cobalt complexes for asymmetric alkene hydrogenation. <i>Journal of the American Chemical Society</i> , 2012 , 134, 4561-4	16.4	261
66	Azo N?N Bond Cleavage with a Redox-Active Vanadium Compound Involving Metalligand Cooperativity. <i>Angewandte Chemie</i> , 2012 , 124, 5482-5486	3.6	11
65	Structure and Reactivity of a Hafnocene ENitrido Prepared From Dinitrogen Cleavage. <i>Angewandte Chemie</i> , 2012 , 124, 5303-5306	3.6	18
64	Structure and reactivity of a hafnocene Ehitrido prepared from dinitrogen cleavage. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5213-6	16.4	41
63	Synthesis and electronic structure determination of N-alkyl-substituted bis(imino)pyridine iron imides exhibiting spin crossover behavior. <i>Journal of the American Chemical Society</i> , 2011 , 133, 17353-6	9 ^{16.4}	87
62	Preface: Forum on redox-active ligands. <i>Inorganic Chemistry</i> , 2011 , 50, 9737-40	5.1	329
61	Synthesis, Electronic Structure, and Ethylene Polymerization Activity of Bis(imino)pyridine Cobalt Alkyl Cations. <i>Angewandte Chemie</i> , 2011 , 123, 8293-8297	3.6	11
60	Innentitelbild: Synthesis, Electronic Structure, and Ethylene Polymerization Activity of Bis(imino)pyridine Cobalt Alkyl Cations (Angew. Chem. 35/2011). <i>Angewandte Chemie</i> , 2011 , 123, 8104-	83:64	
59	Synthesis, electronic structure, and ethylene polymerization activity of bis(imino)pyridine cobalt alkyl cations. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8143-7	16.4	60
58	Inside Cover: Synthesis, Electronic Structure, and Ethylene Polymerization Activity of Bis(imino)pyridine Cobalt Alkyl Cations (Angew. Chem. Int. Ed. 35/2011). <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 7956-7956	16.4	
57	Synthesis, electronic structure, and catalytic activity of reduced bis(aldimino)pyridine iron compounds: experimental evidence for ligand participation. <i>Inorganic Chemistry</i> , 2011 , 50, 3159-69	5.1	66

56	Iron-catalyzed intermolecular [2⊞2]]cycloaddition. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8858-61	16.4	127
55	Dinitrogen silylation and cleavage with a hafnocene complex. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10406-9	16.4	66
54	Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex. <i>Nature Chemistry</i> , 2010 , 2, 30-5	17.6	157
53	Synthesis and molecular and electronic structures of reduced bis(imino)pyridine cobalt dinitrogen complexes: ligand versus metal reduction. <i>Journal of the American Chemical Society</i> , 2010 , 132, 1676-84	16.4	164
52	Synthesis of aryl-substituted bis(imino)pyridine iron dinitrogen complexes. <i>Inorganic Chemistry</i> , 2010 , 49, 2782-92	5.1	112
51	Reduced N-alkyl substituted bis(imino)pyridine cobalt complexes: molecular and electronic structures for compounds varying by three oxidation states. <i>Inorganic Chemistry</i> , 2010 , 49, 6110-23	5.1	86
50	Synthesis and electronic structure of cationic, neutral, and anionic bis(imino)pyridine iron alkyl complexes: evaluation of redox activity in single-component ethylene polymerization catalysts. Journal of the American Chemical Society, 2010 , 132, 15046-59	16.4	140
49	Carbon monoxide-induced dinitrogen cleavage with group 4 metallocenes: reaction scope and coupling to N-H bond formation and CO deoxygenation. <i>Journal of the American Chemical Society</i> , 2010 , 132, 10553-64	16.4	73
48	Photolysis and thermolysis of bis(imino)pyridine cobalt azides: C-H activation from putative cobalt nitrido complexes. <i>Journal of the American Chemical Society</i> , 2010 , 132, 16343-5	16.4	101
47	Chemistry. Radical ligands confer nobility on base-metal catalysts. <i>Science</i> , 2010 , 327, 794-5	33.3	712
46	Functionalization of hafnium oxamidide complexes prepared from CO-induced N2 cleavage. <i>Journal of the American Chemical Society</i> , 2010 , 132, 15340-50	16.4	47
45	Modern Alchemy: Replacing Precious Metals with Iron in Catalytic Alkene and Carbonyl Hydrogenation Reactions 2010 , 83-110		28
44	N-N bond cleavage in diazoalkanes by a bis(imino)pyridine iron complex. <i>Journal of the American Chemical Society</i> , 2009 , 131, 36-7	16.4	51
43	Bis(indenyl)hafnium Chemistry: Ligand-Induced Haptotropic Rearrangement and Fundamental Reactivity Studies at a Reduced Hafnium Center. <i>Organometallics</i> , 2009 , 28, 2471-2484	3.8	9
42	Addition of methyl triflate to a hafnocene dinitrogen complex: stepwise n(2) methylation and conversion to a hafnocene hydrazonato compound. <i>Journal of the American Chemical Society</i> , 2009 , 131, 14903-12	16.4	29
41	Iron-catalyzed, hydrogen-mediated reductive cyclization of 1,6-enynes and diynes: evidence for bis(imino)pyridine ligand participation. <i>Journal of the American Chemical Society</i> , 2009 , 131, 8772-4	16.4	229
40	Enantiopure Pyridine Bis(oxazoline) Pyboxland Bis(oxazoline) Boxllron Dialkyl Complexes: Comparison to Bis(imino)pyridine Compounds and Application to Catalytic Hydrosilylation of Ketones. Organometallics, 2009, 28, 3928-3940	3.8	183
39	Bis(imino)pyridine iron complexes for aldehyde and ketone hydrosilylation. <i>Organic Letters</i> , 2008 , 10, 2789-92	6.2	185

(2006-2008)

Functional Group Tolerance and Substrate Scope in Bis(imino)pyridine Iron Catalyzed Alkene Hydrogenation. <i>Organometallics</i> , 2008 , 27, 1470-1478	3.8	175
CarbonDxygen Bond Cleavage by Bis(imino)pyridine Iron Compounds: Catalyst Deactivation Pathways and Observation of Acyl CD Bond Cleavage in Esters. <i>Organometallics</i> , 2008 , 27, 6264-6278	3.8	88
1,2-Addition versus Bond Metathesis Reactions in Transient Bis(cyclopentadienyl)zirconium Imides: Evidence for a d0 Dihydrogen Complex. <i>Organometallics</i> , 2008 , 27, 872-879	3.8	22
Synthesis of Bis(imino)pyridine Iron Di- and Monoalkyl Complexes: Stability Differences between FeCH2SiMe3 and FeCH2CMe3 Derivatives. <i>Organometallics</i> , 2008 , 27, 109-118	3.8	80
Bis(imino)pyridine iron alkyls containing beta-hydrogens: synthesis, evaluation of kinetic stability, and decomposition pathways involving chelate participation. <i>Journal of the American Chemical Society</i> , 2008 , 130, 11631-40	16.4	72
Carboxylation of an ansa-zirconocene dinitrogen complex: regiospecific hydrazine synthesis from N2 and CO2. <i>Journal of the American Chemical Society</i> , 2008 , 130, 4248-9	16.4	55
Dinitrogen functionalization with bis(cyclopentadienyl) complexes of zirconium and hafnium. <i>Dalton Transactions</i> , 2007 , 16-25	4.3	126
Neutral-ligand complexes of bis(imino)pyridine iron: synthesis, structure, and spectroscopy. <i>Inorganic Chemistry</i> , 2007 , 46, 7055-63	5.1	109
Nitrogen-carbon bond formation from N2 and CO2 promoted by a hafnocene dinitrogen complex yields a substituted hydrazine. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 2858-61	16.4	79
NH Group Transfer and Oxidative Addition Chemistry Promoted by Isolable Bis(cyclopentadienyl)titanium Sandwich Complexes. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 2677-2685	2.3	27
Iron diazoalkane chemistry: N-N bond hydrogenation and intramolecular C-H activation. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7212-3	16.4	88
An FeVI nitride: there is plenty of room at the top!. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 6956-9	16.4	14
N2 Hydrogenation Promoted by a Side-On Bound Hafnocene Dinitrogen Complex. <i>Organometallics</i> , 2006 , 25, 1021-1027	3.8	76
Bis(imino)pyridine ligand deprotonation promoted by a transient iron amide. <i>Inorganic Chemistry</i> , 2006 , 45, 2-4	5.1	62
Iron-catalyzed [2pi + 2pi] cycloaddition of alpha,omega-dienes: the importance of redox-active supporting ligands. <i>Journal of the American Chemical Society</i> , 2006 , 128, 13340-1	16.4	294
CarbonHydrogen Bond Activation with a Cyclometalated Zirconocene Hydride: Mechanistic Differences between Arene and Alkane Reductive Elimination. <i>Organometallics</i> , 2006 , 25, 1092-1100	3.8	17
Arene Coordination in Bis(imino)pyridine Iron Complexes: Identification of Catalyst Deactivation Pathways in Iron-Catalyzed Hydrogenation and Hydrosilation. <i>Organometallics</i> , 2006 , 25, 4269-4278	3.8	179
Synthesis and hydrogenation of bis(imino)pyridine iron imides. <i>Journal of the American Chemical Society</i> , 2006 , 128, 5302-3	16.4	189
	Hydrogenation. Organometallics, 2008, 27, 1470-1478 CarbonDxygen Bond Cleavage by Bis(imino)pyridine Iron Compounds: Catalyst Deactivation Pathways and Observation of Acyl CD Bond Cleavage in Esters. Organometallics, 2008, 27, 6264-6278 1,2-Addition versus Bond Metathesis Reactions in Transient Bis(cyclopentadienyl)zirconium Imides: Evidence for a dD Dihydrogen Complex. Organometallics, 2008, 27, 872-879 Synthesis of Bis(imino)pyridine Iron Di- and Monoalkyl Complexes: Stability Differences between FeCH2SiMe3 and FeCH2CMe3 Derivatives. Organometallics, 2008, 27, 109-118 Bis(imino)pyridine iron alkyls containing beta-hydrogens: synthesis, evaluation of kinetic stability, and decomposition pathways involving chelate participation. Journal of the American Chemical Society, 2008, 130, 11631-40 Carboxylation of an ansa-zirconocene dinitrogen complex: regiospecific hydrazine synthesis from N2 and CO2. Journal of the American Chemical Society, 2008, 130, 4248-9 Dinitrogen functionalization with bis(cyclopentadienyl) complexes of zirconium and hafnium. Dalton Transactions, 2007, 16-25 Neutral-ligand complexes of bis(imino)pyridine iron: synthesis, structure, and spectroscopy. Inorganic Chemistry, 2007, 46, 7055-63 Nitrogen-carbon bond formation from N2 and CO2 promoted by a hafnocene dinitrogen complex yields a substituted hydrazine. Angewandte Chemie - International Edition, 2007, 46, 2858-61 NIB Group Transfer and Oxidative Addition Chemistry Promoted by Isolable Bisi(cyclopentadienyl)titanium Sandwich Complexes. European Journal of Inorganic Chemistry, 2007, 2017-2685 Iron diazoalkane chemistry: N-N bond hydrogenation and intramolecular C-H activation. Journal of the American Chemical Society, 2007, 129, 7212-3 An FeVI nitride: there is plenty of room at the topl. Angewandte Chemie - International Edition, 2006, 45, 6956-9 N2 Hydrogenation Promoted by a Side-On Bound Hafnocene Dinitrogen Complex. Organometallics, 2006, 25, 1021-1027 Bis(imino)pyridine ligand deprotonation promoted by a transient iron am	Arene Coordination in Bis(imino) pyridine Iron Compounds: Catalyst Deactivation Pathways and Observation of Acyl CD Bond Cleavage in Esters. Organometallics, 2008, 27, 6264-6278 3.8 1,2-Addition versus Bond Metathesis Reactions in Transient Bis(cyclopentadienyl)zirconium Imides: Evidence for a d0 Dihydrogen Complex. Organometallics, 2008, 27, 872-879 3.8 Synthesis of Bis(imino)pyridine Iron Di- and Monoalkyl Complexes: Stability Differences between FeCH2SiMe3 and FeCH2CMe3 Derivatives. Organometallics, 2008, 27, 199-118 3.8 Bis(imino)pyridine iron alkyls containing beta-hydrogens: synthesis, evaluation of kinetic stability, and decomposition pathways involving chelate participation. Journal of the American Chemical Society, 2008, 130, 11631-40 16-4 Carboxylation of an ansa-zirconocene dinitrogen complex: regiospecific hydrazine synthesis from N2 and CO2. Journal of the American Chemical Society, 2008, 130, 4248-9 16-4 Dinitrogen functionalization with bis(cyclopentadienyl) complexes of zirconium and hafnium. Dalton Transactions, 2007, 16-25 43 Neutral-ligand complexes of bis(imino)pyridine iron: synthesis, structure, and spectroscopy. Inorganic Chemistry, 2007, 46, 7055-63 54 Nitrogen-carbon bond formation from N2 and CO2 promoted by a hafnocene dinitrogen complex yields a substituted hydrazine. Angewandet Chemie - International Edition, 2007, 46, 2858-61 16-4 NB Group Transfer and Oxidative Addition Chemistry Promoted by Isolable Bis(cyclopentadienyl)titanium Sandwich Complexes. European Journal of Inorganic Chemistry, 2007, 23 2007, 2677-2685 NP Hydrogenation Promoted by a Side-On Bound Hafnocene Dinitrogen Complex. Organometallics, 2006, 45, 6956-9 16-4 NP Hydrogenation Promoted by a Side-On Bound Hafnocene Dinitrogen Complex. Organometallics, 2006, 45, 6956-9 16-4 CarbonBydrogen Bond Activation with a Cyclometalated Zirconocene Hydride:IMechanistic Differences between Arene and Alkane Reductive Elimination. Organometallics, 2006, 25, 1022-1100 3.8 Differences between Arene and Alkane Reductive E

20	Bis(diisopropylphosphino)pyridine iron dicarbonyl, dihydride, and silyl hydride complexes. <i>Inorganic Chemistry</i> , 2006 , 45, 7252-60	5.1	140
19	N-C bond formation promoted by a hafnocene dinitrogen complex: comparison of zirconium and hafnium congeners. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10696-7	16.4	71
18	Mono(dinitrogen) and carbon monoxide adducts of bis(cyclopentadienyl) titanium sandwiches. <i>Journal of the American Chemical Society</i> , 2006 , 128, 6018-9	16.4	39
17	Electronic structure of bis(imino)pyridine iron dichloride, monochloride, and neutral ligand complexes: a combined structural, spectroscopic, and computational study. <i>Journal of the American Chemical Society</i> , 2006 , 128, 13901-12	16.4	425
16	Square planar bis(imino)pyridine iron halide and alkyl complexes. Chemical Communications, 2005, 3406	5 -§ .8	96
15	Low-Valent Điimine Iron Complexes for Catalytic Olefin Hydrogenation. <i>Organometallics</i> , 2005 , 24, 5518-5527	3.8	153
14	Kinetics and mechanism of N2 hydrogenation in bis(cyclopentadienyl) zirconium complexes and dinitrogen functionalization by 1,2-addition of a saturated C-H bond. <i>Journal of the American Chemical Society</i> , 2005 , 127, 14051-61	16.4	83
13	Square planar vs tetrahedral geometry in four coordinate iron(II) complexes. <i>Inorganic Chemistry</i> , 2005 , 44, 3103-11	5.1	101
12	Bis(imino)pyridine iron(II) alkyl cations for olefin polymerization. <i>Journal of the American Chemical Society</i> , 2005 , 127, 9660-1	16.4	146
11	Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. <i>Nature</i> , 2004 , 427, 527-30	50.4	506
10	Synthesis, Reactivity, and Solid State Structures of Four-Coordinate Iron(II) and Manganese(II) Alkyl Complexes. <i>Organometallics</i> , 2004 , 23, 237-246	3.8	103
9	Dinitrogen activation by titanium sandwich complexes. <i>Journal of the American Chemical Society</i> , 2004 , 126, 14688-9	16.4	74
8	On the origin of dinitrogen hydrogenation promoted by [(eta5-C5Me4H)2Zr]2(mu2,eta2,eta2-N2). Journal of the American Chemical Society, 2004 , 126, 14326-7	16.4	88
7	Synthesis and Characterization of Zirconium and Iron Complexes Containing Substituted Indenyl Ligands: Evaluation of Steric and Electronic Parameters. <i>Organometallics</i> , 2004 , 23, 5332-5346	3.8	39
6	Preparation and molecular and electronic structures of iron(0) dinitrogen and silane complexes and their application to catalytic hydrogenation and hydrosilation. <i>Journal of the American Chemical Society</i> , 2004 , 126, 13794-807	16.4	707
5	Selective, catalytic carbon-carbon bond activation and functionalization promoted by late transition metal catalysts. <i>Journal of the American Chemical Society</i> , 2003 , 125, 886-7	16.4	128
4	Alkyl Substituent Effects on Reductive Elimination Reactions in Zirconocene Alkyl Hydride Complexes. Manipulation of the Alkyl Steric Environment Allows the Synthesis of a Zirconocene Dinitrogen Complex. <i>Organometallics</i> , 2003 , 22, 2797-2805	3.8	27
3	Functionalization of elemental phosphorus with [Zr(eta5-C5Me5)(eta5-C5H4tBu)H2]2. <i>Angewandte Chemie - International Edition</i> , 2002 , 41, 3463-5	16.4	28

LIST OF PUBLICATIONS

Well-Defined Cationic Cobalt(I) Precatalyst for Olefin-Alkyne [2 + 2] Cycloaddition and Olefin-Diene Hydrovinylation Reactions: Experimental Evidence for Metallacycle Intermediates. *Organometallics*,

3.8 3

Cationic Bis(phosphine) Cobalt(I) Arene Complexes as Precatalysts for the Asymmetric Synthesis of Sitagliptin. *ACS Catalysis*,4680-4687

13.1