Jeffry G Weers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1664088/publications.pdf

Version: 2024-02-01

		201674	265206
47	2,333	27	42
papers	citations	h-index	g-index
50	50	50	1477
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Inhaled Medicines: Past, Present, and Future. Pharmacological Reviews, 2022, 74, 48-118.	16.0	44
2	Formulation of Dry Powders for Inhalation Comprising High Doses of a Poorly Soluble Hydrophobic Drug. Frontiers in Drug Delivery, 2022, 2, .	1.6	6
3	Safety, Tolerability, and Pharmacokinetics of RT234 (Vardenafil Inhalation Powder): A First-in-Human, Ascending Single- and Multiple-Dose Study in Healthy Subjects. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2021, 34, 251-261.	1.4	5
4	Impact of human behavior on inspiratory flow profiles in patients with pulmonary arterial hypertension using AOSâ,,¢ dry powder inhaler device. Pulmonary Circulation, 2021, 11, 1-9.	1.7	12
5	Assessment of pinch force strength in patients with pulmonary arterial hypertension in the era of AOS® dry powder inhaler based therapies. Respiratory Medicine, 2021, 177, 106308.	2.9	O
6	Optimizing Spray-Dried Porous Particles for High Dose Delivery with a Portable Dry Powder Inhaler. Pharmaceutics, 2021, 13, 1528.	4.5	13
7	Targeting of Inhaled Therapeutics to the Small Airways: Nanoleucine Carrier Formulations. Pharmaceutics, 2021, 13, 1855.	4.5	6
8	The Confusing World of Dry Powder Inhalers: It Is All About Inspiratory Pressures, Not Inspiratory Flow Rates. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2020, 33, 1-11.	1.4	81
9	ACUTE HEMODYNAMIC IMPROVEMENT IN CHRONIC PULMONARY ARTERIAL HYPERTENSION ON DUAL THERAPY FOLLOWING RT234 INHALATION. Chest, 2020, 158, A2162-A2163.	0.8	4
10	SAFETY AND PHARMACOKINETICS OF VARDENAFIL INHALATION POWDER (RT234) FOLLOWING ORAL INHALATION IN HEALTHY ADULT VOLUNTEERS. Chest, 2020, 158, A2212.	0.8	0
11	Post-inhalation cough with therapeutic aerosols: Formulation considerations. Advanced Drug Delivery Reviews, 2020, 165-166, 127-141.	13.7	29
12	Spray-Dried PulmoSphereâ,,¢ Formulations for Inhalation Comprising Crystalline Drug Particles. AAPS PharmSciTech, 2019, 20, 103.	3.3	38
13	Comparison of Phospholipid-Based Particles for Sustained Release of Ciprofloxacin Following Pulmonary Administration to Bronchiectasis Patients. Pulmonary Therapy, 2019, 5, 127-150.	2.2	14
14	Idealhalers Versus Realhalers: Is It Possible to Bypass Deposition in the Upper Respiratory Tract?. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2019, 32, 55-69.	1.4	25
15	The Design and Engineering of Oxygen-Delivering Fluorocarbon Emulsions. , 2019, , 235-334.		2
16	Ciprofloxacin Dry Powder for Inhalation (ciprofloxacin DPI): Technical design and features of an efficient drug–device combination. Pulmonary Pharmacology and Therapeutics, 2018, 50, 72-79.	2.6	45
17	Regional Deposition of Particles Within the Respiratory Tract Should Be Linked to Impaction Parameter, Not Aerodynamic Size. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2018, 31, 116-118.	1.4	5
18	Physical Characterization of Tobramycin Inhalation Powder: II. State Diagram of an Amorphous Engineered Particle Formulation. Molecular Pharmaceutics, 2017, 14, 1950-1960.	4.6	14

#	Article	IF	CITATIONS
19	The Impact of Inspiratory Flow Rate on Drug Delivery to the Lungs with Dry Powder Inhalers. Pharmaceutical Research, 2017, 34, 507-528.	3.5	77
20	Inhalation of tobramycin using simulated cystic fibrosis patient profiles. Pediatric Pulmonology, 2016, 51, 1159-1167.	2.0	30
21	Design of spray dried insulin microparticles to bypass deposition in the extrathoracic region and maximize total lung dose. International Journal of Pharmaceutics, 2016, 511, 1070-1079.	5.2	16
22	Scope and relevance of a pulmonary biopharmaceutical classification system AAPS/FDA/USP Workshop March 16-17th, 2015 in Baltimore, MD. AAPS Open, 2016, 2, .	1.3	73
23	Enhanced design of inhaled therapeutics: what does the future hold?. Therapeutic Delivery, 2016, 7, 145-148.	2.2	5
24	Formulation Design of Dry Powders for Inhalation. Journal of Pharmaceutical Sciences, 2015, 104, 3259-3288.	3.3	99
25	Reply to the comment by de Boer and Hoppentocht on: Inhaled Antimicrobial therapy – Barriers to effective treatment, by J. Weers, Adv. Drug Deliv. Rev. (2015), http://dx.doi.org/10.1016/j.addr.2014.08.013. Advanced Drug Delivery Reviews, 2015, 85, e3-e5.	13.7	1
26	Reply to the comment by Cipolla et al. on: Inhaled antimicrobial therapyâ€"Barriers to effective treatment, by J. Weers, Adv. Drug Deliv. Rev. (2015), http://dx.doi.org/10.1016/j.addr.2014.08.013. Advanced Drug Delivery Reviews, 2015, 85, e8-e10.	13.7	0
27	<i>In Vitroâ€"In Vivo</i> Correlations Observed With Indacaterol-Based Formulations Delivered with the Breezhaler [®] . Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2015, 28, 268-280.	1.4	38
28	Physical Characterization of Tobramycin Inhalation Powder: I. Rational Design of a Stable Engineered-Particle Formulation for Delivery to the Lungs. Molecular Pharmaceutics, 2015, 12, 2582-2593.	4.6	35
29	Inhaled antimicrobial therapy – Barriers to effective treatment. Advanced Drug Delivery Reviews, 2015, 85, 24-43.	13.7	99
30	<i>In Vitro</i> Assessment of Dose Delivery Performance of Dry Powders for Inhalation. Aerosol Science and Technology, 2014, 48, 1099-1110.	3.1	30
31	The PulmoSphereâ,,¢ platform for pulmonary drug delivery. Therapeutic Delivery, 2014, 5, 277-295.	2.2	97
32	Dose Emission Characteristics of Placebo PulmoSphere [®] Particles Are Unaffected by a Subject's Inhalation Maneuver. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2013, 26, 56-68.	1.4	35
33	Development of an Inhaled Dry-Powder Formulation of Tobramycin Using PulmoSphereâ,,¢ Technology. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2011, 24, 175-182.	1.4	268
34	Inhaler Devices: What Remains to be Done?. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2010, 23, S-25-S-37.	1.4	40
35	Pulmonary Formulations: What Remains to be Done?. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2010, 23, S-5-S-23.	1.4	91
36	A Gamma Scintigraphy Study to Investigate Lung Deposition and Clearance of Inhaled Amikacin-Loaded Liposomes in Healthy Male Volunteers. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2009, 22, 131-138.	1.4	88

#	Article	IF	CITATIONS
37	Dry Powder Inhalation Systems from Nektar Therapeutics. , 2008, , 659-672.		O
38	Design of fine particles for pulmonary drug delivery. Expert Opinion on Drug Delivery, 2007, 4, 297-313.	5.0	108
39	Characterization of Suspension-Based Metered Dose Inhaler Formulations Composed of Spray-Dried Budesonide Microcrystals Dispersed in HFA-134a. Pharmaceutical Research, 2004, 21, 1607-1614.	3.5	50
40	Inhalation of a Dry Powder Tobramycin PulmoSphere Formulation in Healthy Volunteers. Chest, 2003, 124, 360-366.	0.8	178
41	Liquid ventilation with perflubron in the treatment of rats with pneumococcal pneumonia. Critical Care Medicine, 2002, 30, 393-395.	0.9	67
42	Improved lung delivery from a passive dry powder inhaler using an Engineered PulmoSphere powder. Pharmaceutical Research, 2002, 19, 689-695.	3.5	130
43	Receptor-mediated targeting of spray-dried lipid particles coformulated with immunoglobulin and loaded with a prototype vaccine. Pharmaceutical Research, 2001, 18, 971-979.	3.5	30
44	Liquid dose pulmonary instillation of gentamicin PulmoSpheres formulations: tissue distribution and pharmacokinetics in rabbits. Pharmaceutical Research, 2001, 18, 1556-1561.	3.5	25
45	Hollow porous particles in metered dose inhalers. Pharmaceutical Research, 2000, 17, 168-174.	3.5	161
46	Novel lipid-based hollow-porous microparticles as a platform for immunoglobulin delivery to the respiratory tract. Pharmaceutical Research, 2000, 17, 275-283.	3 . 5	89
47	Molecular Diffusion in Emulsions and Emulsion Mixtures. , 1998, , 292-327.		18