Trung Dung Dao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1663919/publications.pdf

Version: 2024-02-01

		566801	839053	
19	755	15	18	
papers	citations	h-index	g-index	
10	10	10	1055	
19	19	19	1055	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	A Pickering emulsion route to a stearic acid/graphene core–shell composite phase change material. Carbon, 2016, 99, 49-57.	5.4	97
2	Novel stearic acid/graphene core–shell composite microcapsule as a phase change material exhibiting high shape stability and performance. Solar Energy Materials and Solar Cells, 2015, 137, 227-234.	3.0	80
3	Graphene coated with alumina and its utilization as a thermal conductivity enhancer for alumina sphere/thermoplastic polyurethane composite. Materials Chemistry and Physics, 2015, 153, 291-300.	2.0	78
4	Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene. Materials Research Bulletin, 2015, 70, 651-657.	2.7	72
5	Properties of Graphene/Shape Memory Thermoplastic Polyurethane Composites Actuating by Various Methods. Materials, 2014, 7, 1520-1538.	1.3	63
6	Shape memory polyurethane nanocomposites with functionalized graphene. Smart Materials and Structures, 2012, 21, 075017.	1.8	61
7	Water-dispersible graphene designed as a Pickering stabilizer for the suspension polymerization of poly(methyl methacrylate)/graphene core–shell microsphere exhibiting ultra-low percolation threshold ofÂelectrical conductivity. Polymer, 2014, 55, 4709-4719.	1.8	55
8	The modification of graphene with alcohols and its use in shape memory polyurethane composites. Polymer International, 2013, 62, 54-63.	1.6	36
9	Alumina-coated graphene nanosheet and its composite of acrylic rubber. Journal of Colloid and Interface Science, 2014, 416, 38-43.	5. O	36
10	Super-tough functionalized graphene paper as a high-capacity anode for lithium ion batteries. Chemical Engineering Journal, 2014, 250, 257-266.	6.6	35
11	Solid-state functionalization of graphene with amino acids toward water-dispersity: implications on a composite with polyaniline and its characteristics as a supercapacitor electrode material. Journal of Materials Chemistry A, 2014, 2, 12526.	5.2	32
12	Electrically Conductive Graphene/Poly(methyl methacrylate) Composites with Ultra‣ow Percolation Threshold by Electrostatic Selfâ€Assembly in Aqueous Medium. Macromolecular Chemistry and Physics, 2015, 216, 770-782.	1.1	23
13	Aluminum hydroxide–CNT hybrid material for synergizing the thermal conductivity of alumina sphere/thermoplastic polyurethane composite with minimal increase of electrical conductivity. Journal of Industrial and Engineering Chemistry, 2016, 33, 150-155.	2.9	21
14	Compatibility of Functionalized Graphene with Polyethylene and Its Copolymers. Journal of Nanomaterials, 2013, 2013, 1-8.	1.5	19
15	Direct covalent modification of thermally exfoliated graphene forming functionalized graphene stably dispersible in water and poly(vinyl alcohol). Colloid and Polymer Science, 2013, 291, 2365-2374.	1.0	18
16	The Effect of Oxidation on Properties of Graphene and Its Polycaprolactone Nanocomposites. Journal of Nanoscience and Nanotechnology, 2012, 12, 8420-8430.	0.9	14
17	Graphene functionalized with poly(vinyl alcohol) as a Pickering stabilizer for suspension polymerization of poly(methyl methacrylate). Journal of Colloid and Interface Science, 2016, 476, 47-54.	5.0	9
18	Poly(methyl methacrylate)/Graphene Microparticles Having a Core/Shell Structure Prepared with Carboxylated Graphene as a Pickering Stabilizer. Macromolecular Chemistry and Physics, 2016, 217, 570-580.	1.1	4

ARTICLE IF CITATIONS

19 Shape memory polyurethane nanocomposites with a functionalized graphene., 2013,,. 2