Philipp Damm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1663378/publications.pdf

Version: 2024-02-01

42 papers

1,196 citations

430754 18 h-index 395590 33 g-index

46 all docs 46 docs citations

46 times ranked 1177 citing authors

#	Article	IF	CITATIONS
1	Effect of the underlying cadaver data and patient-specific adaptation of the femur and pelvis on the prediction of the hip joint force estimated using static models. Journal of Biomechanics, 2022, 139, 110526.	0.9	3
2	Overstretching Expectations May Endanger the Success of the "Millennium Surgery― Frontiers in Bioengineering and Biotechnology, 2022, 10, 789629.	2.0	3
3	Is Training With Gym Machines Safe After Hip Arthroplasty?—An In Vivo Load Investigation. Frontiers in Bioengineering and Biotechnology, 2022, 10, 857682.	2.0	1
4	Ground reaction forces and external hip joint moments predict in vivo hip contact forces during gait. Journal of Biomechanics, 2022, 135, 111037.	0.9	5
5	European Society of Biomechanics S.M. Perren Award 2022: Standardized tibio-femoral implant loads and kinematics. Journal of Biomechanics, 2022, 141, 111171.	0.9	10
6	Analysis of hip joint loading during walking with different shoe types using instrumented total hip prostheses. Scientific Reports, 2021, 11, 10073.	1.6	8
7	In vivo loading on the hip joint in patients with total hip replacement performing gymnastics and aerobics exercises. Scientific Reports, 2021, 11, 13395.	1.6	14
8	Towards planning of osteotomy around the knee with quantitative inclusion of the adduction moment: a biomechanical approach. Journal of Experimental Orthopaedics, 2021, 8, 39.	0.8	3
9	Association of Machine Learning–Based Predictions of Medial Knee Contact Force With Cartilage Loss Over 2.5 Years in Knee Osteoarthritis. Arthritis and Rheumatology, 2021, 73, 1638-1645.	2.9	17
10	Surgical cup placement affects the heating up of total joint hip replacements. Scientific Reports, 2021, 11, 15851.	1.6	6
11	In vivo analysis of hip joint loading on Nordic walking novices. Journal of Orthopaedic Surgery and Research, 2021, 16, 596.	0.9	1
12	Dynamic Knee Joint Line Orientation Is Not Predictive of Tibio-Femoral Load Distribution During Walking. Frontiers in Bioengineering and Biotechnology, 2021, 9, 754715.	2.0	5
13	In vivo hip and lumbar spine implant loads during activities in forward bent postures. Journal of Biomechanics, 2020, 102, 109517.	0.9	11
14	Length-Change Patterns of the Collateral Ligaments During Functional Activities After Total Knee Arthroplasty. Annals of Biomedical Engineering, 2020, 48, 1396-1406.	1.3	16
15	A method to assess primary stability of acetabular components in association with bone defects. Journal of Orthopaedic Research, 2020, 38, 1769-1778.	1.2	4
16	Evaluation and validation of 2D biomechanical models of the knee for radiograph-based preoperative planning in total knee arthroplasty. PLoS ONE, 2020, 15, e0227272.	1.1	0
17	The Capacity of Generic Musculoskeletal Simulations to Predict Knee Joint Loading Using the CAMS-Knee Datasets. Annals of Biomedical Engineering, 2020, 48, 1430-1440.	1.3	29
18	ESB Clinical Biomechanics Award 2018: Muscle atrophy-related increased joint loading after total hip arthroplasty and their postoperative change from 3 to 50†months. Clinical Biomechanics, 2019, 65, 105-109.	0.5	12

#	Article	IF	CITATIONS
19	Challenging the Current Concept of Critical Glenoid Bone Loss in Shoulder Instability: Does the Size Measurement Really Tell It All?. American Journal of Sports Medicine, 2019, 47, 688-694.	1.9	40
20	Effect of arm swinging on lumbar spine and hip joint forces. Journal of Biomechanics, 2018, 70, 185-195.	0.9	13
21	Loading of the hip and knee joints during whole body vibration training. PLoS ONE, 2018, 13, e0207014.	1.1	19
22	Physical Activities That Cause High Friction Moments at the Cup in Hip Implants. Journal of Bone and Joint Surgery - Series A, 2018, 100, 1637-1644.	1.4	20
23	Patient-specific musculoskeletal modeling of the hip joint for preoperative planning of total hip arthroplasty: A validation study based on in vivo measurements. PLoS ONE, 2018, 13, e0195376.	1.1	24
24	Gluteal muscle damage leads to higher in vivo hip joint loads 3 months after total hip arthroplasty. PLoS ONE, 2018, 13, e0190626.	1.1	22
25	A comprehensive assessment of the musculoskeletal system: The CAMS-Knee data set. Journal of Biomechanics, 2017, 65, 32-39.	0.9	82
26	In vivo hip joint loads and pedal forces during ergometer cycling. Journal of Biomechanics, 2017, 60, 197-202.	0.9	20
27	Comparison of in vivo measured loads in knee, hip and spinal implants during level walking. Journal of Biomechanics, 2017, 51, 128-132.	0.9	57
28	In vivo measured joint friction in hip implants during walking after a short rest. PLoS ONE, 2017, 12, e0174788.	1.1	22
29	Does aquatic exercise reduce hip and knee joint loading? In vivo load measurements with instrumented implants. PLoS ONE, 2017, 12, e0171972.	1.1	47
30	Standardized Loads Acting in Hip Implants. PLoS ONE, 2016, 11, e0155612.	1.1	297
31	Postoperative Changes in In Vivo Measured Friction in Total Hip Joint Prosthesis during Walking. PLoS ONE, 2015, 10, e0120438.	1.1	27
32	In vivo measurements of the effect of whole body vibration on spinal loads. European Spine Journal, 2014, 23, 666-672.	1.0	21
33	In vivo hip joint loads during three methods of walking with forearm crutches. Clinical Biomechanics, 2013, 28, 530-535.	0.5	47
34	In Vivo Hip Joint Loading during Post-Operative Physiotherapeutic Exercises. PLoS ONE, 2013, 8, e77807.	1.1	38
35	Evaluation of Biomechanical Models for the Planning of Total Hip Arthroplasty. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.9	3
36	Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking. PLoS ONE, 2013, 8, e78373.	1.1	60

#	Article	IF	CITATIONS
37	IN VIVO MEASUREMENTS OF THE FRICTION MOMENT IN TOTAL HIP JOINT PROSTHESES DURING WALKING. Journal of Biomechanics, 2012, 45, S268.	0.9	4
38	High-Tech Hip Implant for Wireless Temperature Measurements In Vivo. PLoS ONE, 2012, 7, e43489.	1.1	44
39	The effect of laterally wedged shoes on the loading of the medial knee compartmentâ€in vivo measurements with instrumented knee implants. Journal of Orthopaedic Research, 2011, 29, 1910-1915.	1.2	39
40	Total hip joint prosthesis for in vivo measurement of forces and moments. Medical Engineering and Physics, 2010, 32, 95-100.	0.8	91
41	Biomechanical Models of the Hip \hat{a} \in " a Validation Study Based on 10 CT-Datasets. , 0, , .		O
42	Uncertainty in Muscle–Tendon Parameters can Greatly Influence the Accuracy of Knee Contact Force Estimates of Musculoskeletal Models. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4