
Sebastiano Chiodini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1663284/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards the development of a cyber-physical measurement system (CPMS): case study of a bioinspired soft growing robot for remote measurement and monitoring applications. Acta IMEKO (2012), 2021, 10, 104.	0.4	15
2	Design of a user-friendly control system for planetary rovers with CPS feature. , 2021, , .		4
3	Viewpoint Selection for Rover Relative Pose Estimation Driven by Minimal Uncertainty Criteria. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	2.4	4
4	Occupancy grid mapping for rover navigation based on semantic segmentation. Acta IMEKO (2012), 2021, 10, 155.	0.4	2
5	Simulation Framework for Mobile Robots in Planetary-Like Environments. , 2020, , .		3
6	Retrieving Scale on Monocular Visual Odometry Using Low-Resolution Range Sensors. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 5875-5889.	2.4	30
7	Evaluation of 3D CNN Semantic Mapping for Rover Navigation. , 2020, , .		12
8	MiniVO: Minimalistic Range Enhanced Monocular System for Scale Correct Pose Estimation. IEEE Sensors Journal, 2020, 20, 11874-11886.	2.4	8
9	Uncertainty evaluation of vision-based approaches for distance measurement of a tether tip-mass. , 2019, , .		0
10	Rover Relative Localization Testing in Martian Relevant Environment. , 2019, , .		3
11	An evaluation of ROS-compatible stereo visual SLAM methods on a nVidia Jetson TX2. Measurement: Journal of the International Measurement Confederation, 2019, 140, 161-170.	2.5	45
12	Experimental evaluation of a camera rig extrinsic calibration method based on retro-reflective markers detection. Measurement: Journal of the International Measurement Confederation, 2019, 140, 47-55.	2.5	7
13	Scale Correct Monocular Visual Odometry Using a LiDAR Altimeter. , 2018, , .		12
14	Robust Visual Localization for Hopping Rovers on Small Bodies. , 2018, , .		7
15	Metrological Characterization of a Vision-Based System for Relative Pose Measurements with Fiducial Marker Mapping for Spacecrafts. Robotics, 2018, 7, 43.	2.1	5
16	An Experimental Comparison of ROS-compatible Stereo Visual SLAM Methods for Planetary Rovers. , 2018, , .		15
17	Camera Rig Extrinsic Calibration Using a Motion Capture System. , 2018, , .		4
18	The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results. Space Science Reviews, 2018, 214, 1.	3.7	19

#	Article	IF	CITATIONS
19	Position Measurement and Uncertainty Analysis for the Shutter Mechanism Mounted on the Rosetta Mission. , 2018, , .		Ο
20	Stereo visual odometry failure recovery using monocular techniques. , 2017, , .		0
21	Monocular visual odometry aided by a low resolution time of flight camera. , 2017, , .		7
22	Mars rovers localization by matching local horizon to surface digital elevation models. , 2017, , .		18
23	Calibration of extrinsic parameters of a hybrid vision system for navigation comprising a very low resolution Time-of-Flight camera. , 2017, , .		3
24	Visual odometry system performance for different landmark average distances. , 2016, , .		1
25	Effect of rolling shutter on visual odometry systems suitable for planetary exploration. , 2016, , .		2
26	Uncertainty comparison of three visual odometry systems in different operative conditions. Measurement: Journal of the International Measurement Confederation, 2016, 78, 388-396.	2.5	16
27	Uncertainty evaluation of a vision system for pose measurement of a spacecraft with fiducial markers. , 2015, , .		7
28	MarsTEM field test in Mars analog environment. , 2015, , .		0
29	Multiphysics modelling of MarsTEM shield. , 2015, , .		1
30	Comparison of visual odometry systems suitable for planetary exploration. , 2014, , .		9
31	Numerical study of lander effects on DREAMS scientific package measurements. , 2014, , .		3
32	MarsTEM: The temperature sensor of the DREAMS package onboard Exomars2016. , 2014, , .		3