Ashok Pandey

List of Publications by Citations

Source: https://exaly.com/author-pdf/1663090/ashok-pandey-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26,660 480 83 147 h-index g-index citations papers 6.8 31,624 7.68 515 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
480	Solid-state fermentation. <i>Biochemical Engineering Journal</i> , 2003 , 13, 81-84	4.2	804
479	Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. <i>Bioresource Technology</i> , 2000 , 74, 69-80	11	797
478	Micro and macroalgal biomass: a renewable source for bioethanol. <i>Bioresource Technology</i> , 2011 , 102, 186-93	11	796
477	New developments in solid state fermentation: I-bioprocesses and products. <i>Process Biochemistry</i> , 2000 , 35, 1153-1169	4.8	729
476	Biological pretreatment of lignocellulosic biomassAn overview. <i>Bioresource Technology</i> , 2016 , 199, 76	-8121	672
475	Bioethanol production from rice straw: An overview. <i>Bioresource Technology</i> , 2010 , 101, 4767-74	11	624
474	Recent advances in solid-state fermentation. <i>Biochemical Engineering Journal</i> , 2009 , 44, 13-18	4.2	533
473	Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. <i>Applied Microbiology and Biotechnology</i> , 2007 , 74, 524-34	5.7	430
472	Cyanobacteria and microalgae: a positive prospect for biofuels. <i>Bioresource Technology</i> , 2011 , 102, 1010	6 3 -72	396
471	Recent process developments in solid-state fermentation. <i>Process Biochemistry</i> , 1992 , 27, 109-117	4.8	379
470	Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. <i>Bioresource Technology</i> , 2013 , 127, 500-7	11	376
469	Potential carbon dioxide fixation by industrially important microalgae. <i>Bioresource Technology</i> , 2010 , 101, 5892-6	11	364
468	Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. <i>Enzyme and Microbial Technology</i> , 2010 , 46, 541-549	3.8	363
467	Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. <i>Renewable Energy</i> , 2009 , 34, 421-424	8.1	354
466	Current developments in solid-state fermentation. <i>Biochemical Engineering Journal</i> , 2013 , 81, 146-161	4.2	341
465	Trends in non-dairy probiotic beverages. Food Research International, 2008, 41, 111-123	7	337
464	Oil cakes and their biotechnological applicationsa review. <i>Bioresource Technology</i> , 2007 , 98, 2000-9	11	329

(2017-2000)

463	Biotechnological potential of coffee pulp and coffee husk for bioprocesses. <i>Biochemical Engineering Journal</i> , 2000 , 6, 153-162	4.2	308
462	Biotechnological potential of agro-industrial residues. II: cassava bagasse. <i>Bioresource Technology</i> , 2000 , 74, 81-87	11	290
461	Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. <i>Process Biochemistry</i> , 2009 , 44, 939-943	4.8	270
460	Advances in lipase-catalyzed esterification reactions. <i>Biotechnology Advances</i> , 2013 , 31, 1846-59	17.8	263
459	Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. <i>Renewable Energy</i> , 2012 , 37, 109-116	8.1	259
458	Applications of Microbial Enzymes in Food Industry. Food Technology and Biotechnology, 2018, 56, 16-30	2.1	258
457	Production, purification and properties of microbial phytases. <i>Bioresource Technology</i> , 2001 , 77, 203-14	11	220
456	Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. <i>Process Biochemistry</i> , 2005 , 40, 2689-2694	4.8	215
455	Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production. <i>Biotechnology Advances</i> , 2009 , 27, 145-52	17.8	211
454	Microalgal hydrogen production - A review. <i>Bioresource Technology</i> , 2017 , 243, 1194-1206	11	195
453	Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. <i>Bioresource Technology</i> , 2010 , 101, 4826-33	11	189
452	Carbon-Increasing Catalytic Strategies for Upgrading Biomass into Energy-Intensive Fuels and Chemicals. <i>ACS Catalysis</i> , 2018 , 8, 148-187	13.1	188
451	Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. <i>Bioresource Technology</i> , 2008 , 99, 4597-602	11	182
450	Recent developments in microbial inulinases. Its production, properties, and industrial applications. <i>Applied Biochemistry and Biotechnology</i> , 1999 , 81, 35-52	3.2	178
449	Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. <i>Science of the Total Environment</i> , 2020 , 716, 137116	10.2	168
448	Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. <i>Bioresource Technology</i> , 2020 , 301, 122725	11	167
447	Coconut oil cakea potential raw material for the production of alpha-amylase. <i>Bioresource Technology</i> , 2004 , 93, 169-74	11	165
446	Bioflocculation: An alternative strategy for harvesting of microalgae - An overview. <i>Bioresource Technology</i> , 2017 , 242, 227-235	11	158

445	New developments in solid-state fermentation. <i>Process Biochemistry</i> , 2000 , 35, 1211-1225	4.8	154
444	Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. <i>Chemosphere</i> , 2017 , 188, 280-291	8.4	151
443	Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. <i>Bioresource Technology</i> , 2011 , 102, 10915-21	11	151
442	Potential of rice straw for bio-refining: An overview. <i>Bioresource Technology</i> , 2016 , 215, 29-36	11	150
441	Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. <i>Process Biochemistry</i> , 2006 , 41, 759-763	4.8	149
440	Strategies for design of improved biocatalysts for industrial applications. <i>Bioresource Technology</i> , 2017 , 245, 1304-1313	11	135
439	Solid-state fermentation for the production of Monascus pigments from jackfruit seed. <i>Bioresource Technology</i> , 2007 , 98, 1554-60	11	135
438	Bioconversion of sugarcane crop residue for value added products [An overview. <i>Renewable Energy</i> , 2016 , 98, 203-215	8.1	132
437	Microbial strategies for bio-transforming food waste into resources. <i>Bioresource Technology</i> , 2020 , 299, 122580	11	130
436	Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. <i>Bioresource Technology</i> , 2000 , 74, 175-178	11	125
435	A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. <i>Bioengineered</i> , 2021 , 12, 70-87	5.7	123
434	Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. <i>Bioresource Technology</i> , 2008 , 99, 8156-63	11	121
433	Organic solvent adaptation of Gram positive bacteria: applications and biotechnological potentials. <i>Biotechnology Advances</i> , 2011 , 29, 442-52	17.8	120
432	Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. <i>Bioresource Technology</i> , 2015 , 191, 133-9	11	113
431	Zeolite and zeotype-catalysed transformations of biofuranic compounds. <i>Green Chemistry</i> , 2016 , 18, 5701-5735	10	113
430	Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. <i>LWT - Food Science and Technology</i> , 2015 , 64, 1179-1186	5.4	110
429	Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. <i>Food Chemistry</i> , 2014 , 145, 710-6	8.5	108
428	Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. <i>Enzyme and Microbial Technology</i> , 2000 , 27, 127-133	3.8	108

(2000-2019)

427	A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives. <i>Renewable and Sustainable Energy Reviews</i> , 2019 , 111, 115-131	16.2	105
426	Conversion of food and kitchen waste to value-added products. <i>Journal of Environmental Management</i> , 2019 , 241, 619-630	7.9	105
425	Bio-ethanol from water hyacinth biomass: an evaluation of enzymatic saccharification strategy. <i>Bioresource Technology</i> , 2010 , 101, 925-30	11	105
424	Thermostable cellulases: Current status and perspectives. <i>Bioresource Technology</i> , 2019 , 279, 385-392	11	103
423	Extra-cellular l-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. <i>Process Biochemistry</i> , 2002 , 38, 307-312	4.8	101
422	Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation. <i>Bioresource Technology</i> , 2016 , 213, 216-221	11	99
421	Current perspectives in enzymatic saccharification of lignocellulosic biomass. <i>Biochemical Engineering Journal</i> , 2015 , 102, 38-44	4.2	98
420	Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 127, 109876	16.2	98
419	2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. <i>International Journal of Food Microbiology</i> , 2015 , 211, 44-50	5.8	97
418	Probiotic bile salt hydrolase: current developments and perspectives. <i>Applied Biochemistry and Biotechnology</i> , 2010 , 162, 166-80	3.2	97
417	Characterization and stability of proteases from Penicillium sp. produced by solid-state fermentation. <i>Enzyme and Microbial Technology</i> , 2003 , 32, 246-251	3.8	97
416	Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. <i>Applied Biochemistry and Biotechnology</i> , 2007 , 142, 60-70	3.2	96
415	Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01. Bioresource Technology, 2013 , 145, 182-7	11	95
414	Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. <i>Biochemical Engineering Journal</i> , 2013 , 78, 67-72	4.2	94
413	Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. <i>Plant Physiology and Biochemistry</i> , 2010 , 48, 987-92	5.4	93
412	Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation. <i>Process Biochemistry</i> , 2006 , 41, 575-580	4.8	93
411	Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. <i>Bioresource Technology</i> , 2006 , 97, 506-11	11	92
410	Fruity flavour production by Ceratocystis fimbriata grown on coffee husk in solid-state fermentation. <i>Process Biochemistry</i> , 2000 , 35, 857-861	4.8	92

409	Process optimization for antifungal chitinase production by Trichoderma harzianum. <i>Process Biochemistry</i> , 2004 , 39, 1583-1590	4.8	91
408	Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate - Metabolic aspects, challenges and possibilities: An overview. <i>Bioresource Technology</i> , 2017 , 239, 507-517	11	90
407	Batch fermentation model of propionic acid production by Propionibacterium acidipropionici in different carbon sources. <i>Applied Biochemistry and Biotechnology</i> , 2008 , 151, 333-41	3.2	89
406	Water hyacinth a potential source for value addition: An overview. <i>Bioresource Technology</i> , 2017 , 230, 152-162	11	88
405	Aspects of fermenter design for solid-state fermentations. <i>Process Biochemistry</i> , 1991 , 26, 355-361	4.8	88
404	Cellulase production under solid-state fermentation by Trichoderma reesei RUT C30: statistical optimization of process parameters. <i>Applied Biochemistry and Biotechnology</i> , 2008 , 151, 122-31	3.2	87
403	Optimization of the production of aroma compounds by Kluyveromyces marxianus in solid-state fermentation using factorial design and response surface methodology. <i>Biochemical Engineering Journal</i> , 2000 , 6, 33-39	4.2	87
402	Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. <i>Renewable Energy</i> , 2014 , 62, 362-368	8.1	86
401	Solid state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus. <i>Process Biochemistry</i> , 1999 , 34, 851-855	4.8	86
400	Prebiotic Oligosaccharides: Special Focus on Fructooligosaccharides, Its Biosynthesis and Bioactivity. <i>Applied Biochemistry and Biotechnology</i> , 2017 , 183, 613-635	3.2	85
399	Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. <i>International Journal of Food Microbiology</i> , 2014 , 188, 60-6	5.8	85
398	Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oilcakes as substrates. <i>Process Biochemistry</i> , 2005 , 40, 1749-1754	4.8	84
397	Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. <i>Journal of Hazardous Materials</i> , 2016 , 318, 347-354	12.8	83
396	Antioxidant and hepatoprotective potential of endo-polysaccharides from Hericium erinaceus grown on tofu whey. <i>International Journal of Biological Macromolecules</i> , 2012 , 51, 1140-6	7.9	83
395	Iron requirement and search for siderophores in lactic acid bacteria. <i>Applied Microbiology and Biotechnology</i> , 1994 , 40, 735-739	5.7	83
394	Algal Green Energy IR&D and technological perspectives for biodiesel production. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 82, 2946-2969	16.2	82
393	Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application. <i>Bioresource Technology</i> , 2017 , 245, 1352-1361	11	77
392	Formic acid as a potential pretreatment agent for the conversion of sugarcane bagasse to bioethanol. <i>Applied Biochemistry and Biotechnology</i> , 2010 , 162, 2313-23	3.2	77

(2020-2020)

391	Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. <i>Journal of Hazardous Materials</i> , 2020 , 389, 121908	12.8	76
390	Thermostable xylanases from thermophilic fungi and bacteria: Current perspective. <i>Bioresource Technology</i> , 2019 , 277, 195-203	11	75
389	High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. <i>Fuel</i> , 2012 , 92, 340-345	7.1	74
388	Metabolic engineering approaches for lactic acid production. <i>Process Biochemistry</i> , 2006 , 41, 991-1000	4.8	73
387	Prevalence and hazardous impact of pharmaceutical and personal care products and antibiotics in environment: A review on emerging contaminants. <i>Environmental Research</i> , 2021 , 194, 110664	7.9	73
386	Scale-up strategies for packed-bed bioreactors for solid-state fermentation. <i>Process Biochemistry</i> , 1999 , 35, 167-178	4.8	72
385	Production of phytase by Mucor racemosus in solid-state fermentation. <i>Biotechnology Progress</i> , 2003 , 19, 312-9	2.8	71
384	Biopigments from Monascus: strains selection, citrinin production and color stability. <i>Brazilian Archives of Biology and Technology</i> , 2005 , 48, 885-894	1.8	71
383	Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. <i>Fuel</i> , 2020 , 270, 117453	7.1	70
382	Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. <i>Bioresource Technology</i> , 2016 , 213, 222-230	11	70
381	Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. <i>Bioresource Technology</i> , 2012 , 114, 735-9	11	70
380	Fermentative production of gellan using Sphingomonas paucimobilis. <i>Process Biochemistry</i> , 2003 , 38, 1513-1519	4.8	70
379	Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash. <i>Bioresource Technology</i> , 2016 , 199, 202-210	11	69
378	Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. <i>Bioresource Technology</i> , 2017 , 242, 265-271	11	69
377	Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. <i>World Journal of Microbiology and Biotechnology</i> , 2010 , 26, 1233-40	4.4	69
376	Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food?. <i>Brazilian Archives of Biology and Technology</i> , 2012 , 55, 29-46	1.8	68
375	An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. <i>Bioresource Technology</i> , 2016 , 199, 13-20	11	67
374	Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. <i>Journal of Cleaner Production</i> , 2020 , 263, 121500	10.3	67

373	Microbial production of extra-cellular phytase using polystyrene as inert solid support. <i>Bioresource Technology</i> , 2002 , 83, 229-33	11	66
372	Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. <i>Food Research International</i> , 2009 , 42, 454-460	7	65
371	Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. <i>Journal of Basic Microbiology</i> , 2004 , 44, 49-58	2.7	65
370	Solid-state fermentation for production of phytase by Rhizopus oligosporus. <i>Applied Biochemistry and Biotechnology</i> , 2002 , 102-103, 251-60	3.2	65
369	Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. <i>Bioresource Technology</i> , 2018 , 253, 252-255	11	64
368	Bioethanol production from dilute acid pretreated Indian bamboo variety (Dendrocalamus sp.) by separate hydrolysis and fermentation. <i>Industrial Crops and Products</i> , 2014 , 52, 169-176	5.9	64
367	Metagenome Analysis: a Powerful Tool for Enzyme Bioprospecting. <i>Applied Biochemistry and Biotechnology</i> , 2017 , 183, 636-651	3.2	64
366	Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures. <i>Journal of Basic Microbiology</i> , 2007 , 47, 118-26	2.7	64
365	Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World Journal of Microbiology and Biotechnology, 2012 , 28, 473-83	4.4	62
364	Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating Eproteobacterium sp. ISTKB. <i>Biotechnology for Biofuels</i> , 2018 , 11, 154	7.8	61
363	Heterogeneity of zeolite combined with biochar properties as a function of sewage sludge composting and production of nutrient-rich compost. <i>Waste Management</i> , 2017 , 68, 760-773	8.6	60
362	Thermostable phytase production by Thermoascus aurantiacus in submerged fermentation. <i>Applied Biochemistry and Biotechnology</i> , 2004 , 118, 205-14	3.2	60
361	Glucoamylase Research: An Overview. <i>Starch/Staerke</i> , 1995 , 47, 439-445	2.3	60
360	Molecular improvements in microbial \(\pm\)mylases for enhanced stability and catalytic efficiency. <i>Bioresource Technology</i> , 2017 , 245, 1740-1748	11	59
359	Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149. <i>Brazilian Archives of Biology and Technology</i> , 2009 , 52, 17-23	1.8	59
358	Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165. <i>International Journal of Biological Macromolecules</i> , 2013 , 59, 84-9	7.9	57
357	Aroma compounds produced by Kluyveromyces marxianus in solid state fermentation on a packed bed column bioreactor. <i>World Journal of Microbiology and Biotechnology</i> , 2001 , 17, 767-771	4.4	57
356	Probiotic fermented foods for health benefits. <i>Engineering in Life Sciences</i> , 2012 , 12, 377-390	3.4	56

(1991-1999)

355	Ethanol production in solid substrate fermentation using thermotolerant yeast. <i>Process Biochemistry</i> , 1999 , 34, 115-119	4.8	56	
354	Current research trends on micro- and nano-plastics as an emerging threat to global environment: A review. <i>Journal of Hazardous Materials</i> , 2021 , 409, 124967	12.8	56	
353	Novel enzymatic processes applied to the food industry. <i>Current Opinion in Food Science</i> , 2016 , 7, 64-72	9.8	55	
352	Simultaneous saccharification and fermentation of cassava bagasse for L-(+)-lactic Acid production using Lactobacilli. <i>Applied Biochemistry and Biotechnology</i> , 2006 , 134, 263-72	3.2	55	
351	Solid state fermentation for L-glutamic acid production using Brevibacterium sp <i>Biotechnology Letters</i> , 1996 , 18, 199-204	3	55	
350	Application of the biorefinery concept to produce L-lactic acid from the soybean vinasse at laboratory and pilot scale. <i>Bioresource Technology</i> , 2011 , 102, 1765-72	11	54	
349	Biosynthesis of glucoamylase from Aspergillus niger by solid-state fermentation using tea waste as the basis of a solid substrate. <i>Bioresource Technology</i> , 1998 , 65, 83-85	11	54	
348	Purification and characterisation of an acidic and antifungal chitinase produced by a Streptomyces sp. <i>Bioresource Technology</i> , 2015 , 188, 195-201	11	53	
347	Studies on biosurfactants from Pseudozyma sp. NII 08165 and their potential application as laundry detergent additives. <i>Biochemical Engineering Journal</i> , 2013 , 78, 85-92	4.2	53	
346	Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor. <i>Journal of Bioscience and Bioengineering</i> , 2010 , 109, 588-97	3.3	53	
345	Biotechnological potential of yeasts in functional food industry. <i>Trends in Food Science and Technology</i> , 2019 , 83, 129-137	15.3	53	
344	Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. <i>Science of the Total Environment</i> , 2020 , 737, 139766	10.2	52	
343	Statistical optimization of simultaneous saccharification and l(+)-lactic acid fermentation from cassava bagasse using mixed culture of lactobacilli by response surface methodology. <i>Biochemical Engineering Journal</i> , 2007 , 36, 262-267	4.2	52	
342	Purification, characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa. <i>Process Biochemistry</i> , 2005 , 40, 3251-3254	4.8	52	
341	Highly glucose tolerant Eglucosidase from Aspergillus unguis: NII 08123 for enhanced hydrolysis of biomass. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2013 , 40, 967-75	4.2	51	
340	Bioethanol production from bamboo (Dendrocalamus sp.) process waste. <i>Biomass and Bioenergy</i> , 2013 , 59, 142-150	5.3	51	
339	Optimization of liquid media for lipase production by Candida rugosa. <i>Bioresource Technology</i> , 1996 , 55, 167-170	11	51	
338	Effect of particle size of substrate of enzyme production in solid-state fermentation. <i>Bioresource Technology</i> , 1991 , 37, 169-172	11	51	

337	Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. <i>Industrial Crops and Products</i> , 2020 , 153, 112568	5.9	51
336	Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application. <i>Bioresource Technology</i> , 2012 , 112, 300-7	11	49
335	Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid-state fermentation. <i>World Journal of Microbiology and Biotechnology</i> , 2008 , 24, 2671-2675	4.4	49
334	Emerging applications of biochar: Improving pig manure composting and attenuation of heavy metal mobility in mature compost. <i>Journal of Hazardous Materials</i> , 2020 , 389, 122116	12.8	48
333	Biocatalytic strategies for the production of high fructose syrup from inulin. <i>Bioresource Technology</i> , 2018 , 260, 395-403	11	48
332	Production and partial purification of alpha-amylase from a novel isolate Streptomyces gulbargensis. <i>Journal of Industrial Microbiology and Biotechnology</i> , 2009 , 36, 189-94	4.2	48
331	Experimental design to enhance the production of l-(+)-lactic acid from steam-exploded wood hydrolysate using Rhizopus oryzae in a mixed-acid fermentation. <i>Process Biochemistry</i> , 1999 , 34, 949-95.	5 ^{4.8}	48
330	Fungal biosynthesis of endochitinase and chitobiase in solid state fermentation and their application for the production of N-acetyl-D-glucosamine from colloidal chitin. <i>Bioresource Technology</i> , 2007 , 98, 2742-8	11	46
329	L(+)-lactic acid production using Lactobacillus casei in solid-state fermentation. <i>Biotechnology Letters</i> , 2005 , 27, 1685-8	3	46
328	A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. <i>Microbial Cell Factories</i> , 2021 , 20, 120	6.4	46
327	Hydrolysis of pretreated rice straw by an enzyme cocktail comprising acidic xylanase from Aspergillus sp. for bioethanol production. <i>Renewable Energy</i> , 2016 , 98, 9-15	8.1	46
326	Application of a new xylanase activity from XR44A in brewer's spent grain saccharification. <i>Journal of Chemical Technology and Biotechnology</i> , 2015 , 90, 573-581	3.5	44
325	Critical Review on Biochar-Supported Catalysts for Pollutant Degradation and Sustainable Biorefinery. <i>Advanced Sustainable Systems</i> , 2020 , 4, 1900149	5.9	44
324	Properties of a major Eglucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. <i>Process Biochemistry</i> , 2011 , 46, 1521-1524	4.8	44
323	Rapid degradation of the organophosphate pesticide - Chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. <i>Bioresource Technology</i> , 2019 , 292, 122025	11	43
322	Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461. <i>Journal of Bioscience and Bioengineering</i> , 2006 , 102, 150-6	3.3	43
321	Effect of nutritional and environmental conditions on the production of exo-polysaccharide of Agaricus brasiliensis by submerged fermentation and its antitumor activity. <i>LWT - Food Science and Technology</i> , 2007 , 40, 30-35	5.4	43
320	Hydrotropic pretreatment on rice straw for bioethanol production. <i>Renewable Energy</i> , 2016 , 98, 2-8	8.1	42

(1993-2009)

319	Immobilized bacterial \text{\textit{\textit{H}mylase} for effective hydrolysis of raw and soluble starch. <i>Food Research International</i> , 2009 , 42, 436-442	7	42	
318	Relation between growth, respirometric analysis and biopigments production from Monascus by solid-state fermentation. <i>Biochemical Engineering Journal</i> , 2006 , 29, 262-269	4.2	42	
317	Improvements in solid-state fermentation for glucoamylase production. <i>Biological Wastes</i> , 1990 , 34, 11-19		42	
316	Hydrolysis of Lignocellulosic Biomass for Bioethanol Production 2011 , 229-250		41	
315	Biochemical characterization of raw-starch-digesting alpha amylase purified from Bacillus amyloliquefaciens. <i>Applied Biochemistry and Biotechnology</i> , 2009 , 158, 653-62	3.2	41	
314	Global Burden of Childhood Epilepsy, Intellectual Disability, and Sensory Impairments. <i>Pediatrics</i> , 2020 , 146,	7.4	40	
313	Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 144, 110837	16.2	39	
312	Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 105684	6.8	39	
311	Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review. <i>Journal of Hazardous Materials</i> , 2020 , 398, 123019	12.8	38	
310	An organic-solvent-tolerant esterase from thermophilic Bacillus licheniformis S-86. <i>Bioresource Technology</i> , 2009 , 100, 896-902	11	37	
309	An assessment of the persistence of pathogenic bacteria removal in chicken manure compost employing clay as additive via meta-genomic analysis. <i>Journal of Hazardous Materials</i> , 2019 , 366, 184-19	12.8	37	
308	Hydrolysis of biomass using a reusable solid carbon acid catalyst and fermentation of the catalytic hydrolysate to ethanol. <i>Bioresource Technology</i> , 2015 , 188, 99-102	11	36	
307	Recent advancements in the production and application of microbial pectinases: an overview. <i>Reviews in Environmental Science and Biotechnology</i> , 2017 , 16, 381-394	13.9	36	
306	Gibberellic acid production by solid-state fermentation in coffee husk. <i>Applied Biochemistry and Biotechnology</i> , 2002 , 102-103, 179-91	3.2	36	
305	Production and purification of extracellular chitinases from Penicillium aculeatum NRRL 2129 under solid-state fermentation. <i>Enzyme and Microbial Technology</i> , 2005 , 36, 880-887	3.8	36	
304	Evaluation of hydrotropic pretreatment on lignocellulosic biomass. <i>Bioresource Technology</i> , 2016 , 213, 350-358	11	36	
303	Lignocellulosic bio-refinery approach for microbial 2,3-Butanediol production. <i>Bioresource Technology</i> , 2020 , 302, 122873	11	35	
302	The production of glucoamylase by Aspergillus niger NCIM 1245. <i>Process Biochemistry</i> , 1993 , 28, 305-30	9 4.8	35	

301	Thermostable phytase in feed and fuel industries. <i>Bioresource Technology</i> , 2019 , 278, 400-407	11	34
300	Packed-bed column bioreactor for production of enzyme. <i>Enzyme and Microbial Technology</i> , 1992 , 14, 486-488	3.8	34
299	Development of a novel ultrasound-assisted alkali pretreatment strategy for the production of bioethanol and xylanases from chili post harvest residue. <i>Bioresource Technology</i> , 2017 , 242, 146-151	11	33
298	Recent developments in l-glutaminase production and applications - An overview. <i>Bioresource Technology</i> , 2017 , 245, 1766-1774	11	33
297	An alkali-thermostable xylanase from Bacillus pumilus functionally expressed in Kluyveromyces lactis and evaluation of its deinking efficiency. <i>Bioresource Technology</i> , 2014 , 165, 309-13	11	33
296	Simultaneous saccharification and L-(+)-lactic acid fermentation of protease-treated wheat bran using mixed culture of lactobacilli. <i>Biotechnology Letters</i> , 2006 , 28, 1823-6	3	33
295	Microbial synthesis of poly-3-hydroxybutyrate and its application as targeted drug delivery vehicle. <i>Bioresource Technology</i> , 2013 , 145, 290-6	11	32
294	Nanocellulose-based products for sustainable applications-recent trends and possibilities. <i>Reviews in Environmental Science and Biotechnology</i> , 2020 , 19, 779-806	13.9	32
293	A novel sono-assisted acid pretreatment of chili post harvest residue for bioethanol production. <i>Bioresource Technology</i> , 2016 , 213, 58-63	11	32
292	Remodeling agro-industrial and food wastes into value-added bioactives and biopolymers. <i>Industrial Crops and Products</i> , 2020 , 154, 112621	5.9	31
291	A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 143, 110972	16.2	31
290	Production and characterization of the exopolysaccharides produced by Agaricus brasiliensis in submerged fermentation. <i>Applied Biochemistry and Biotechnology</i> , 2008 , 151, 283-94	3.2	30
289	Eco-epidemiological survey of Leishmania (Viannia) braziliensis American cutaneous and mucocutaneous leishmaniasis in Ribeira Valley River, Paran\bar{5}tate, Brazil. <i>Acta Tropica</i> , 2005 , 93, 141-9	3.2	30
288	Pontibacter niistensis sp. nov., isolated from forest soil. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2010 , 60, 2867-2870	2.2	30
287	Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World Journal of Microbiology and Biotechnology, 2011 , 27, 259-265	4.4	29
286	Rice straw hydrolysate to fuel and volatile fatty acid conversion by Clostridium sporogenes BE01: bio-electrochemical analysis of the electron transport mediators involved. <i>Green Chemistry</i> , 2015 , 17, 3047-3058	10	28
285	Improvement on citric acid production in solid-state fermentation by Aspergillus niger LPB BC mutant using citric pulp. <i>Applied Biochemistry and Biotechnology</i> , 2009 , 158, 72-87	3.2	28
284	Folate-producing lactic acid bacteria from cow® milk with probiotic characteristics. <i>International Journal of Dairy Technology</i> , 2010 , 63, 339-348	3.7	28

(2020-2017)

283	Microbial phytase: Impact of advances in genetic engineering in revolutionizing its properties and applications. <i>Bioresource Technology</i> , 2017 , 245, 1790-1799	11	27	
282	Advancement in valorization technologies to improve utilization of bio-based waste in bioeconomy context. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 131, 109965	16.2	27	
281	Plant growth promoting potential of Pontibacter niistensis in cowpea (Vigna unguiculata (L.) Walp.). <i>Applied Soil Ecology</i> , 2011 , 49, 250-255	5	27	
280	L(+)-Lactic acid recovery from cassava bagasse based fermented medium using anion exchange resins. <i>Brazilian Archives of Biology and Technology</i> , 2008 , 51, 1241-1248	1.8	27	
279	Comparison of citric acid production by solid-state fermentation in flask, column, tray, and drum bioreactors. <i>Applied Biochemistry and Biotechnology</i> , 2004 , 118, 293-303	3.2	27	
278	Sustainability and life cycle assessments of lignocellulosic and algal pretreatments. <i>Bioresource Technology</i> , 2020 , 301, 122678	11	27	
277	Valorization of cashew nut processing residues for industrial applications. <i>Industrial Crops and Products</i> , 2020 , 152, 112550	5.9	26	
276	Manure pretreatments with black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae): A study to reduce pathogen content. <i>Science of the Total Environment</i> , 2020 , 737, 139842	10.2	26	
275	Effect of surface charge alteration on stability of L-asparaginase II from Escherichia sp. <i>Enzyme and Microbial Technology</i> , 2014 , 56, 15-9	3.8	26	
274	Advances in Thermochemical Conversion of BiomassIntroduction 2015 , 3-30		26	
273	Simultaneous saccharification and fermentation of oil palm front for the production of 2,3-butanediol. <i>Bioresource Technology</i> , 2019 , 278, 145-149	11	26	
272	Discarded oranges and brewer's spent grains as promoting ingredients for microbial growth by submerged and solid state fermentation of agro-industrial waste mixtures. <i>Applied Biochemistry and Biotechnology</i> , 2013 , 170, 1885-95	3.2	25	
271	Lignocellulosic Bioethanol: Current Status and Future Perspectives 2011 , 101-122		25	
270	Isolation and characterization of a novel the mylase from a metagenomic library of Western Ghats of Kerala, India. <i>Biologia (Poland)</i> , 2011 , 66, 939-944	1.5	25	
269	Phytodegradation potential of Erythrina crista-galli L., Fabaceae, in petroleum-contaminated soil. <i>Applied Biochemistry and Biotechnology</i> , 2009 , 157, 10-22	3.2	25	
268	Comparative studies on inulinase synthesis by Staphylococcus sp. and Kluyveromyces marxianus in submerged culture. <i>Bioresource Technology</i> , 1999 , 69, 123-127	11	25	
267	Cellulase and ligninase production by basidiomycete culture in solid-state fermentation. <i>Biological Wastes</i> , 1987 , 20, 1-9		25	
266	Sustainable and eco-friendly strategies for shrimp shell valorization. <i>Environmental Pollution</i> , 2020 , 267, 115656	9.3	25	

265	Development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer. <i>Bioresource Technology</i> , 2016 , 215, 110-116	11	25
264	Application of metagenomic analysis for detection of the reduction in the antibiotic resistance genes (ARGs) by the addition of clay during poultry manure composting. <i>Chemosphere</i> , 2019 , 220, 137-1	145 ⁴	25
263	Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting?. <i>Journal of Hazardous Materials</i> , 2021 , 406, 124593	12.8	25
262	Production of Starch Saccharifying Enzyme (Glucoamylase) in Solid Cultures. <i>Starch/Staerke</i> , 1992 , 44, 75-77	2.3	24
261	Recent advances in biodiesel production: Challenges and solutions. <i>Science of the Total Environment</i> , 2021 , 794, 148751	10.2	24
260	Cloning and expression of l-asparaginase from E. coli in eukaryotic expression system. <i>Biochemical Engineering Journal</i> , 2015 , 102, 14-17	4.2	23
259	Role of microbial diversity to influence the growth and environmental remediation capacity of bamboo: A review. <i>Industrial Crops and Products</i> , 2021 , 167, 113567	5.9	23
258	Physicochemical Characterization of an Exopolysaccharide Produced by a Newly Isolated Weissella cibaria. <i>Applied Biochemistry and Biotechnology</i> , 2015 , 176, 440-53	3.2	22
257	Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production. <i>Frontiers in Energy Research</i> , 2017 , 5,	3.8	22
256	Statistical optimization of l-leucine amino peptidase production from Streptomyces gedanensis IFO 13427 under submerged fermentation using response surface methodology. <i>Biochemical Engineering Journal</i> , 2009 , 43, 64-71	4.2	22
255	A statistical approach for optimization of polyhydroxybutyrate production by Bacillus sphaericus NCIM 5149 under submerged fermentation using central composite design. <i>Applied Biochemistry and Biotechnology</i> , 2010 , 162, 996-1007	3.2	22
254	Immobilization of Brevibacterium Cells for the production of l-glutamic acid. <i>Bioresource Technology</i> , 1998 , 63, 101-106	11	22
253	Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. <i>Bioresource Technology</i> , 2022 , 343, 126065	11	22
252	Pentose rich acid pretreated liquor as co-substrate for 1,3-propanediol production. <i>Renewable Energy</i> , 2018 , 129, 794-799	8.1	21
251	Production, Purification, and Application of Microbial Enzymes 2017 , 13-41		21
250	Surfactant-assisted acid pretreatment of sugarcane tops for bioethanol production. <i>Applied Biochemistry and Biotechnology</i> , 2012 , 167, 1513-26	3.2	21
249	An evaluation of chemical pretreatment methods for improving enzymatic saccharification of chili postharvest residue. <i>Applied Biochemistry and Biotechnology</i> , 2012 , 167, 1489-500	3.2	21
248	Solid-State Fermentation Technology for Bioconversion of Biomass and Agricultural Residues 2009 , 19	7-221	21

(2020-2007)

247	Production of L(+) lactic acid from cassava starch hydrolyzate by immobilized Lactobacillus delbrueckii. <i>Journal of Basic Microbiology</i> , 2007 , 47, 25-30	2.7	21
246	Current and future ABE processes. Biofuel Research Journal,77-77	13.9	21
245	Challenges and opportunities in bioremediation of micro-nano plastics: A review. <i>Science of the Total Environment</i> , 2022 , 802, 149823	10.2	21
244	A biorefinery-based approach for the production of ethanol from enzymatically hydrolysed cotton stalks. <i>Bioresource Technology</i> , 2017 , 242, 178-183	11	20
243	Potential of Brachiaria mutica (Para grass) for bioethanol production from Loktak Lake. <i>Bioresource Technology</i> , 2017 , 242, 133-138	11	20
242	Microbial Electro-Remediation (MER) of hazardous waste in aid of sustainable energy generation and resource recovery. <i>Environmental Technology and Innovation</i> , 2020 , 19, 100997	7	20
241	Detoxification of acidic biorefinery waste liquor for production of high value amino acid. <i>Bioresource Technology</i> , 2016 , 213, 270-275	11	20
240	Production and characterization of PHB from a novel isolate Comamonas sp. from a dairy effluent sample and its application in cell culture. <i>Biochemical Engineering Journal</i> , 2015 , 101, 150-159	4.2	20
239	Copra waste 🖪 novel substrate for solid-state fermentation. <i>Bioresource Technology</i> , 1995 , 51, 217-220	11	20
238	New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production. <i>Bioresource Technology</i> , 2018 , 270, 498-	- 5 03	20
237	Patterns of heavy metal resistant bacterial community succession influenced by biochar amendment during poultry manure composting. <i>Journal of Hazardous Materials</i> , 2021 , 420, 126562	12.8	20
236	Genomic analysis of carbon dioxide sequestering bacterium for exopolysaccharides production. <i>Scientific Reports</i> , 2019 , 9, 4270	4.9	19
235	Extracellular expression of a thermostable phytase (phyA) in Kluyveromyces lactis. <i>Process Biochemistry</i> , 2014 , 49, 1440-1447	4.8	19
234	Utilization of soybean vinasse for Egalactosidase production. <i>Food Research International</i> , 2009 , 42, 476-483	7	19
233	Characterization of plant growth-promoting rhizobacterium Exiguobacterium NII-0906 for its growth promotion of cowpea (Vigna unguiculata). <i>Biologia (Poland)</i> , 2010 , 65, 197-203	1.5	19
232	Compactin production in solid-state fermentation using orthogonal array method by P. brevicompactum. <i>Biochemical Engineering Journal</i> , 2008 , 41, 295-300	4.2	19
231	Xanthan gum production from cassava bagasse hydrolysate with Xanthomonas campestris using alternative sources of nitrogen. <i>Applied Biochemistry and Biotechnology</i> , 2004 , 118, 305-12	3.2	19
230	Oilfield waste treatment using novel hydrocarbon utilizing bacterial consortium - A microcosm approach. <i>Science of the Total Environment</i> , 2020 , 745, 141043	10.2	19

229	Biochar for remediation of agrochemicals and synthetic organic dyes from environmental samples: A review <i>Chemosphere</i> , 2021 , 272, 129917	8.4	19
228	Petroleum sludge polluted soil remediation: Integrated approach involving novel bacterial consortium and nutrient application. <i>Science of the Total Environment</i> , 2021 , 763, 142934	10.2	19
227	Expression system for heterologous protein expression in the filamentous fungus Aspergillus unguis. <i>Bioresource Technology</i> , 2017 , 245, 1334-1342	11	18
226	Biosynthesis of 2,5-furan dicarboxylic acid by Aspergillus flavus APLS-1: Process optimization and intermediate product analysis. <i>Bioresource Technology</i> , 2019 , 284, 155-160	11	18
225	Succession of keratin-degrading bacteria and associated health risks during pig manure composting. <i>Journal of Cleaner Production</i> , 2020 , 258, 120624	10.3	18
224	Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing. <i>Renewable Energy</i> , 2020 , 152, 421-429	8.1	18
223	Paracoccus niistensis sp. nov., isolated from forest soil, India. <i>Antonie Van Leeuwenhoek</i> , 2011 , 99, 501-6	5 2.1	18
222	A new alternative to produce gibberellic acid by solid state fermentation. <i>Brazilian Archives of Biology and Technology</i> , 2009 , 52, 181-188	1.8	18
221	Evaluation of Amycolatopsis mediterranei VA18 for production of rifamycin-B. <i>Process Biochemistry</i> , 2000 , 36, 305-309	4.8	18
220	Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 58837-58856	5.1	18
219	Kinetic and thermodynamic investigations of sewage sludge biochar in removal of Remazol Brilliant Blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity. <i>Environmental Technology and Innovation</i> , 2021 , 23, 101556	7	18
218	Biotransformation of 5-hydroxymethylfurfural by Acinetobacter oleivorans S27 for the synthesis of furan derivatives. <i>Bioresource Technology</i> , 2019 , 282, 88-93	11	17
217	White Biotechnology in Cosmetics 2015 , 607-652		17
216	Simultaneous saccharification and protein enrichment fermentation of sugar beet pulp. <i>Biotechnology Letters</i> , 1988 , 10, 67-72	3	17
215	Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. <i>International Journal of Hydrogen Energy</i> , 2021 ,	6.7	17
214	Production of Pectinase from MPTD1. Food Technology and Biotechnology, 2018, 56, 110-116	2.1	17
213	An efficient aqueous two phase systems using dual inorganic electrolytes to separate 1,3-propanediol from the fermented broth. <i>Bioresource Technology</i> , 2018 , 254, 239-246	11	16
212	Evaluation of oil palm front hydrolysate as a novel substrate for 2,3-butanediol production using a novel isolate Enterobacter cloacae SG1. <i>Renewable Energy</i> , 2016 , 98, 216-220	8.1	16

(2021-2016)

211	Material balance studies for the conversion of sorghum stover to bioethanol. <i>Biomass and Bioenergy</i> , 2016 , 85, 48-52	5.3	16
210	Purification and characterization of two isoforms of exoinulinase from Penicillium oxalicum BGPUP-4 for the preparation of high fructose syrup from inulin. <i>International Journal of Biological Macromolecules</i> , 2018 , 118, 1974-1983	7.9	16
209	Enrichment of Elinolenic acid in the lipid extracted from Mucor zychae MTCC 5420. <i>Food Research International</i> , 2009 , 42, 449-453	7	16
208	Plant growth-promoting activity in newly isolated Bacillus thioparus (NII-0902) from Western ghat forest, India. <i>World Journal of Microbiology and Biotechnology</i> , 2010 , 26, 2277-2283	4.4	16
207	Critical review on bioconversion of winery wastes into value-added products. <i>Industrial Crops and Products</i> , 2020 , 158, 112954	5.9	16
206	Microbial dynamics during anaerobic digestion of sewage sludge combined with food waste at high organic loading rates in immersed membrane bioreactors. <i>Fuel</i> , 2021 , 303, 121276	7.1	16
205	Aminopeptidase from Streptomyces gedanensis as a useful tool for protein hydrolysate preparations with improved functional properties. <i>Journal of Food Science</i> , 2012 , 77, C791-7	3.4	15
204	White Biotechnology in Biosurfactants 2015 , 499-521		15
203	Production of an alkaline xylanase from recombinant Kluyveromyces lactis (KY1) by submerged fermentation and its application in bio-bleaching. <i>Biochemical Engineering Journal</i> , 2015 , 102, 24-30	4.2	15
202	Preparation of poly(L-lactide) blends and biodegradation by Lentzea waywayandensis. <i>Biotechnology Letters</i> , 2012 , 34, 2031-5	3	15
201	Growth enhancement of black pepper (Piper nigrum) by a newly isolated Bacillus tequilensis NII-0943. <i>Biologia (Poland)</i> , 2011 , 66, 801-806	1.5	15
200	Enhancement of lipase production during repeated batch culture using immobilised Candida rugosa. <i>Process Biochemistry</i> , 1997 , 32, 437-440	0	15
	Tugosa. Frocess biochemistry, 1991, 32, 431-440	4.8	
199	Production and purification of a solvent-resistant esterase from Bacillus licheniformis S-86. <i>Applied Biochemistry and Biotechnology</i> , 2008 , 151, 221-32	3.2	15
199 198	Production and purification of a solvent-resistant esterase from Bacillus licheniformis S-86. <i>Applied</i>		
	Production and purification of a solvent-resistant esterase from Bacillus licheniformis S-86. <i>Applied Biochemistry and Biotechnology</i> , 2008 , 151, 221-32 Fatty acid profiling during microbial lipid production under varying pO2 and impeller tip speeds.	3.2	15
198	Production and purification of a solvent-resistant esterase from Bacillus licheniformis S-86. <i>Applied Biochemistry and Biotechnology</i> , 2008 , 151, 221-32 Fatty acid profiling during microbial lipid production under varying pO2 and impeller tip speeds. <i>Applied Biochemistry and Biotechnology</i> , 2008 , 151, 599-609 Permeabilization and inhibition of the germination of spores of Aspergillus niger for gluconic acid	3.2	15
198 197	Production and purification of a solvent-resistant esterase from Bacillus licheniformis S-86. <i>Applied Biochemistry and Biotechnology</i> , 2008 , 151, 221-32 Fatty acid profiling during microbial lipid production under varying pO2 and impeller tip speeds. <i>Applied Biochemistry and Biotechnology</i> , 2008 , 151, 599-609 Permeabilization and inhibition of the germination of spores of Aspergillus niger for gluconic acid production from glucose. <i>Bioresource Technology</i> , 2008 , 99, 4559-65 Statistical optimization of solid-state fermentation for the production of fungal inulinase from	3.2	15 15 15

193	Minimizing hazardous impact of food waste in a circular economy - Advances in resource recovery through green strategies. <i>Journal of Hazardous Materials</i> , 2021 , 416, 126154	12.8	15
192	Updates on high value products from cellulosic biorefinery. <i>Fuel</i> , 2022 , 308, 122056	7.1	15
191	Genetic and metabolic engineering approaches for the production and delivery of L-asparaginases: An overview. <i>Bioresource Technology</i> , 2017 , 245, 1775-1781	11	14
190	Role of compost biochar amendment on the (im)mobilization of cadmium and zinc for Chinese cabbage (Brassica rapa L.) from contaminated soil. <i>Journal of Soils and Sediments</i> , 2019 , 19, 3883-3897	3.4	14
189	Recent advances in microbial production of malic acid from renewable byproducts. <i>Reviews in Environmental Science and Biotechnology</i> , 2019 , 18, 579-595	13.9	14
188	Emerging approaches in fermentative production of statins. <i>Applied Biochemistry and Biotechnology</i> , 2013 , 171, 927-38	3.2	14
187	Single-step purification and immobilization of MBP-phytase fusion on starch agar beads: application in dephytination of soy milk. <i>Applied Biochemistry and Biotechnology</i> , 2012 , 167, 981-90	3.2	14
186	Biodegradation of Polycyclic Aromatic Hydrocarbons by Laccase of Pycnoporus sanguineus and Toxicity Evaluation of Treated PAH. <i>Biotechnology</i> , 2008 , 7, 669-677	0.1	14
185	Citric acid bioproduction and downstream processing: Status, opportunities, and challenges. <i>Bioresource Technology</i> , 2021 , 320, 124426	11	14
184	Non-conventional yeast cell factories for sustainable bioprocesses. <i>FEMS Microbiology Letters</i> , 2018 , 365,	2.9	14
183	Efficiency of transporter genes and proteins in hyperaccumulator plants for metals tolerance in wastewater treatment: Sustainable technique for metal detoxification. <i>Environmental Technology and Innovation</i> , 2021 , 23, 101725	7	14
182	Technological perspectives for utilisation of waste glycerol for the production of biofuels: A review. <i>Environmental Technology and Innovation</i> , 2021 , 24, 101902	7	14
181	Agricultural waste biorefinery development towards circular bioeconomy. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 158, 112122	16.2	13
180	Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability <i>Science of the Total Environment</i> , 2021 , 811, 152357	10.2	13
179	Biotechnological potential of as a source of novel biocatalysts and metabolites. <i>Critical Reviews in Biotechnology</i> , 2020 , 40, 1019-1034	9.4	13
178	Sequential presence of heavy metal resistant fungal communities influenced by biochar amendment in the poultry manure composting process. <i>Journal of Cleaner Production</i> , 2021 , 291, 12594	1 ^{70.3}	13
177	Metal and metal(loids) removal efficiency using genetically engineered microbes: Applications and challenges. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125855	12.8	13
176	Potential of nanocellulose for wastewater treatment. <i>Chemosphere</i> , 2021 , 281, 130738	8.4	13

(2009-2013)

175	Development of a novel solid-state fermentation strategy for the production of poly-3-hydroxybutyrate using polyurethane foams by Bacillus sphaericus NII 0838. <i>Annals of Microbiology</i> , 2013 , 63, 1265-1274	3.2	12	
174	Self-cycling fermentation for 1,3-propanediol production: Comparative evaluation of metabolite flux in cell recycling, simple batch and continuous processes using Lactobacillus brevis N1E9.3.3 strain. <i>Journal of Biotechnology</i> , 2017 , 259, 110-119	3.7	12	
173	Production of leucine amino peptidase in lab scale bioreactors using Streptomyces gedanensis. <i>Bioresource Technology</i> , 2011 , 102, 8171-8	11	12	
172	Enzymes as additives or processing AIDS in food biotechnology. <i>Enzyme Research</i> , 2011 , 2010, 436859	2.4	12	
171	Application of Tropical Agro-industrial Residues as Substrate for Solid-state Fermentation Processes 2008 , 412-442		12	
170	Effect of caffeine and tannins on cultivation and fructification of Pleurotus on coffee husks. Brazilian Journal of Microbiology, 2006 , 37, 420-424	2.2	12	
169	Relationship between coffee husk caffeine degradation and respiration of Aspergillus sp. LPBx in solid-state fermentation. <i>Applied Biochemistry and Biotechnology</i> , 2002 , 102-103, 169-77	3.2	12	
168	Biochemical conversion of biodiesel by-product into malic acid: A way towards sustainability. <i>Science of the Total Environment</i> , 2020 , 709, 136206	10.2	12	
167	Occurrence of emerging sulfonamide resistance (sul1 and sul2) associated with mobile integrons-integrase (intl1 and intl2) in riverine systems. <i>Science of the Total Environment</i> , 2021 , 751, 143	2297	12	
166	Bioplastic production from renewable lignocellulosic feedstocks: a review. <i>Reviews in Environmental Science and Biotechnology</i> , 2021 , 20, 167-187	13.9	12	
165	Effect of sewage sludge biochar on the soil nutrient, microbial abundance, and plant biomass: A sustainable approach towards mitigation of solid waste. <i>Chemosphere</i> , 2022 , 287, 132112	8.4	12	
164	Sustainable Production of Chemicals and Energy Fuel Precursors from Lignocellulosic Fractions. <i>Green Energy and Technology</i> , 2017 , 7-33	0.6	11	
163	Improved 1,3-propanediol production with maintained physical conditions and optimized media composition: Validation with statistical and neural approach. <i>Biochemical Engineering Journal</i> , 2017 , 126, 109-117	4.2	11	
162	Industrial Enzymes 2015 , 473-497		11	
161	Esterase Active in Polar Organic Solvents from the Yeast Pseudozyma sp. NII 08165. <i>Enzyme Research</i> , 2014 , 2014, 494682	2.4	11	
160	Butanol Fuel from Biomass 2011 , 571-586		11	
159	Proline-specific extracellular aminopeptidase purified from Streptomyces lavendulae. <i>Applied Biochemistry and Biotechnology</i> , 2011 , 163, 994-1001	3.2	11	
158	Isolation and Characterization of High-Strength Phenol-Degrading Novel Bacterium of the Pantoea Genus. <i>Bioremediation Journal</i> , 2009 , 13, 171-179	2.3	11	

157	Nocardioides mesophilus sp. nov., isolated from soil. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2010 , 60, 2288-2292	2.2	11
156	Production of chitinolytic enzymes with Trichoderma longibrachiatum IMI 92027 in solid substrate fermentation. <i>Applied Biochemistry and Biotechnology</i> , 2004 , 118, 189-204	3.2	11
155	Nanocellulose as green material for remediation of hazardous heavy metal contaminants. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127516	12.8	11
154	Recent advances in microbial biosynthesis of C3 - C5 diols: Genetics and process engineering approaches. <i>Bioresource Technology</i> , 2021 , 322, 124527	11	11
153	Thermophilic Chitinases: Structural, Functional and Engineering Attributes for Industrial Applications. <i>Applied Biochemistry and Biotechnology</i> , 2021 , 193, 142-164	3.2	11
152	Advanced biomaterials for sustainable applications in the food industry: Updates and challenges. <i>Environmental Pollution</i> , 2021 , 283, 117071	9.3	11
151	Sustainable green processing of grape pomace for the production of value-added products: An overview. <i>Environmental Technology and Innovation</i> , 2021 , 23, 101592	7	11
150	Probiotics and gut microbiome - Prospects and challenges in remediating heavy metal toxicity. Journal of Hazardous Materials, 2021 , 420, 126676	12.8	11
149	Alkaline Treatment 2015 , 51-60		10
148	Mixed Cultures Fermentation for the Production of Poly-Ehydroxybutyrate. <i>Brazilian Archives of Biology and Technology</i> , 2014 , 57, 644-652	1.8	10
147	Gene cloning and soluble expression of Aspergillus niger phytase in E. coli cytosol via chaperone co-expression. <i>Biotechnology Letters</i> , 2014 , 36, 85-91	3	10
146	Polyphasic taxonomy of novel actinobacteria showing macromolecule degradation potentials in Bigeum Island, Korea. <i>Current Microbiology</i> , 2009 , 59, 21-9	2.4	10
145	Genetic tuning of coryneform bacteria for the overproduction of amino acids. <i>Process Biochemistry</i> , 1998 , 33, 147-161	4.8	10
144	Selection and optimization of Bacillus atrophaeus inoculum medium and its effect on spore yield and thermal resistance. <i>Applied Biochemistry and Biotechnology</i> , 2008 , 151, 380-92	3.2	10
143	Effect of different carbon sources on growth and glutamic acid fermentation by Brevibacterium sp <i>Journal of Basic Microbiology</i> , 1995 , 35, 249-254	2.7	10
142	Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review. <i>Renewable and Sustainable Energy Reviews</i> , 2022 , 156, 111987	16.2	10
141	Bioengineered Biochar As Smart Candidate For Resource Recovery Toward Circular Bio-Economy: A Review. <i>Bioengineered</i> , 2021 ,	5.7	10
140	Delignification of cotton stalks using sodium cumene sulfonate for bioethanol production. <i>Biofuels</i> , 2020 , 11, 431-440	2	10

(2021-2021)

139	Pyrolysis of almond (Prunus amygdalus) shells: Kinetic analysis, modelling, energy assessment and technical feasibility studies. <i>Bioresource Technology</i> , 2021 , 337, 125466	11	10
138	Lignocellulosic biomass-based engineered biochar composites: A facile strategy for abatement of emerging pollutants and utilization in industrial applications. <i>Renewable and Sustainable Energy Reviews</i> , 2021 , 152, 111643	16.2	10
137	Fungal endoinulinase production from raw Asparagus inulin for the production of fructooligosaccharides. <i>Bioresource Technology Reports</i> , 2020 , 10, 100417	4.1	9
136	Biohydrogen Production: An Introduction 2013 , 1-24		9
135	Microbial Poly-3-Hydroxybutyrate and Related Copolymers 2015 , 575-605		9
134	Biotechnological process for producing black bean slurry without stachyose. <i>Food Research International</i> , 2009 , 42, 425-429	7	9
133	The Industrial Production of Enzymes 2010 , 207-225		9
132	Production of Enzymes by Solid-state Fermentation 2008 , 183-204		9
131	Biosynthesis of rifamycin SV by Amycolatopsis mediterranei MTCC17 in solid cultures. <i>Biotechnology and Applied Biochemistry</i> , 2003 , 37, 311-5	2.8	9
130	Obtusilobinin and obtusilobin, two new triterpene saponins from Anemone obtusiloba. <i>Phytochemistry</i> , 1979 , 18, 1539-1542	4	9
129	Multi-criteria research lines on livestock manure biorefinery development towards a circular economy: From the perspective of a life cycle assessment and business models strategies. <i>Journal of Cleaner Production</i> , 2022 , 341, 130862	10.3	9
128	Bacterial nanocellulose: engineering, production, and applications. <i>Bioengineered</i> , 2021 , 12, 11463-1148	33 .7	9
127	Technologies for disinfection of food grains: Advances and way forward. <i>Food Research International</i> , 2021 , 145, 110396	7	9
126	Identification and characterization of a highly alkaline and thermotolerant novel xylanase from Streptomyces sp <i>Biologia (Poland)</i> , 2013 , 68, 1022-1027	1.5	8
125	Application of response surface method for studying the role of dissolved oxygen and agitation speed on gamma-linolenic acid production. <i>Applied Biochemistry and Biotechnology</i> , 2009 , 152, 108-16	3.2	8
124	Algae biorefinery: a promising approach to promote microalgae industry and waste utilization <i>Journal of Biotechnology</i> , 2021 ,	3.7	8
123	Evaluation of Freshwater Microalgal Isolates for Growth and Oil Production in Seawater Medium. Waste and Biomass Valorization, 2020 , 11, 223-230	3.2	8
122	Sugarcane bagasse derived nanocellulose reinforced with frankincense (Boswellia serrata): Physicochemical properties, biodegradability and antimicrobial effect for controlling microbial growth for food packaging application. <i>Environmental Technology and Innovation</i> , 2021 , 21, 101335	7	8

121	Cleaner technologies to combat heavy metal toxicity. <i>Journal of Environmental Management</i> , 2021 , 296, 113231	7.9	8
120	Catalyst-Based Synthesis of 2,5-Dimethylfuran from Carbohydrates as a Sustainable Biofuel Production Route. <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 3079-3115	8.3	8
119	Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. <i>Chemical Engineering Research and Design</i> , 2022 , 160, 704-733	5.5	8
118	Replacement P212H altered the pH-temperature profile of phytase from Aspergillus niger NII 08121. <i>Applied Biochemistry and Biotechnology</i> , 2015 , 175, 3084-92	3.2	7
117	A novel crude glycerol assisted surfactant pretreatment strategy of chili post-harvest residue for bioethanol production. <i>Biofuels</i> , 2015 , 6, 383-390	2	7
116	An effective surfactant-assisted hydrothermal pretreatment strategy for bioethanol production from chili post-harvest residue by separate hydrolysis and fermentation. <i>Bioprocess and Biosystems Engineering</i> , 2018 , 41, 565-571	3.7	7
115	Production of chitin deacetylase by Aspergillus flavus in submerged conditions. <i>Preparative Biochemistry and Biotechnology</i> , 2016 , 46, 501-8	2.4	7
114	Characterization of leucine amino peptidase from Streptomyces gedanensis and its applications for protein hydrolysis. <i>Process Biochemistry</i> , 2012 , 47, 234-242	4.8	7
113	Resolution of enantiopure (S)-1-(1-napthyl) ethanol from racemic mixture by a novel Bacillus cereus isolate. <i>Journal of Basic Microbiology</i> , 2017 , 57, 762-769	2.7	7
112	Recombinant expression and characterization of L-asparaginase II from a moderately thermotolerant bacterial isolate. <i>Applied Biochemistry and Biotechnology</i> , 2012 , 167, 973-80	3.2	7
112 111		3.2	7
	thermotolerant bacterial isolate. <i>Applied Biochemistry and Biotechnology</i> , 2012 , 167, 973-80	2.7	
111	thermotolerant bacterial isolate. <i>Applied Biochemistry and Biotechnology</i> , 2012 , 167, 973-80 Production of Organic Acids by Solid-state Fermentation 2008 , 205-229 Mixed cultures fermentation for bioconversion of whole bagasse into microbial protein. <i>Journal of</i>		7
111	Production of Organic Acids by Solid-state Fermentation 2008 , 205-229 Mixed cultures fermentation for bioconversion of whole bagasse into microbial protein. <i>Journal of Basic Microbiology</i> , 1987 , 27, 323-327 Microbial engineering for the production of isobutanol: current status and future directions	2.7	7
111 110 109	Production of Organic Acids by Solid-state Fermentation 2008, 205-229 Mixed cultures fermentation for bioconversion of whole bagasse into microbial protein. <i>Journal of Basic Microbiology</i> , 1987, 27, 323-327 Microbial engineering for the production of isobutanol: current status and future directions <i>Bioengineered</i> , 2021, 12, 12308-12321 Potential utilization of dairy industries by-products and wastes through microbial processes: A	2.7 5·7	7 7 7
111 110 109 108	Production of Organic Acids by Solid-state Fermentation 2008, 205-229 Mixed cultures fermentation for bioconversion of whole bagasse into microbial protein. <i>Journal of Basic Microbiology</i> , 1987, 27, 323-327 Microbial engineering for the production of isobutanol: current status and future directions <i>Bioengineered</i> , 2021, 12, 12308-12321 Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review <i>Science of the Total Environment</i> , 2021, 810, 152253 A green biorefinery platform for cost-effective nanocellulose production: investigation of hydrodynamic properties and biodegradability of thin films. <i>Biomass Conversion and Biorefinery</i> ,	2.7 5·7 10.2	7 7 7
1111 1100 1099 108	Production of Organic Acids by Solid-state Fermentation 2008, 205-229 Mixed cultures fermentation for bioconversion of whole bagasse into microbial protein. <i>Journal of Basic Microbiology</i> , 1987, 27, 323-327 Microbial engineering for the production of isobutanol: current status and future directions <i>Bioengineered</i> , 2021, 12, 12308-12321 Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review <i>Science of the Total Environment</i> , 2021, 810, 152253 A green biorefinery platform for cost-effective nanocellulose production: investigation of hydrodynamic properties and biodegradability of thin films. <i>Biomass Conversion and Biorefinery</i> , 2021, 11, 861-870	2.7 5·7 10.2 2.3	7 7 7 7

103	Genomics of Lactic Acid Bacteria for Glycerol Dissimilation. <i>Molecular Biotechnology</i> , 2019 , 61, 562-578	3	6
102	SSF production, purification and characterization of chitin deacetylase from Aspergillus flavus. <i>Biocatalysis and Biotransformation</i> , 2018 , 36, 296-306	2.5	6
101	Solid-state fermentation for the production of biomass valorizing feruloyl esterase. <i>Biocatalysis and Agricultural Biotechnology</i> , 2016 , 7, 7-13	4.2	6
100	An improved bioprocess for extracellular L-leucine amino peptidase production using Streptomyces gedanensis. <i>Current Microbiology</i> , 2011 , 62, 1009-16	2.4	6
99	Arginine specific aminopeptidase from Lactobacillus brevis. <i>Brazilian Archives of Biology and Technology</i> , 2010 , 53, 1443-1450	1.8	6
98	Factors Affecting Solid-state Fermentation 2008 , 26-47		6
97	Mushroom Production 2008, 253-274		6
96	Fed-batch production of gluconic acid by terpene-treated Aspergillus niger spores. <i>Applied Biochemistry and Biotechnology</i> , 2008 , 151, 413-23	3.2	6
95	Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases <i>Science of the Total Environment</i> , 2022 , 817, 153054	10.2	6
94	Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives <i>Journal of Hazardous Materials</i> , 2022 , 429, 128312	12.8	6
93	Effect of precultural and nutritional parameters on compactin production by solid-state fermentation. <i>Journal of Microbiology and Biotechnology</i> , 2009 , 19, 690-7	3.3	6
92	the following the first of the control of the contr		
	Uptake and mobilization of heavy metals through phytoremediation process from native plants species growing on complex pollutants: Antioxidant enzymes and photosynthetic pigments response. <i>Environmental Technology and Innovation</i> , 2021 , 23, 101629	7	6
91	species growing on complex pollutants: Antioxidant enzymes and photosynthetic pigments	7 6.8	6
91	species growing on complex pollutants: Antioxidant enzymes and photosynthetic pigments response. <i>Environmental Technology and Innovation</i> , 2021 , 23, 101629 Adsorptive and photocatalytic properties of metal oxides towards arsenic remediation from water:		
	species growing on complex pollutants: Antioxidant enzymes and photosynthetic pigments response. <i>Environmental Technology and Innovation</i> , 2021 , 23, 101629 Adsorptive and photocatalytic properties of metal oxides towards arsenic remediation from water: A review. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106376 Genotoxicity evaluation of paper industry wastewater prior and post-treatment with laccase	6.8	6
90	species growing on complex pollutants: Antioxidant enzymes and photosynthetic pigments response. <i>Environmental Technology and Innovation</i> , 2021 , 23, 101629 Adsorptive and photocatalytic properties of metal oxides towards arsenic remediation from water: A review. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106376 Genotoxicity evaluation of paper industry wastewater prior and post-treatment with laccase producing Pseudomonas putida MTCC 7525. <i>Journal of Cleaner Production</i> , 2022 , 342, 130981 Emerging trends of microbial technology for the production of oligosaccharides from biowaste and	6.8	6
90	species growing on complex pollutants: Antioxidant enzymes and photosynthetic pigments response. <i>Environmental Technology and Innovation</i> , 2021 , 23, 101629 Adsorptive and photocatalytic properties of metal oxides towards arsenic remediation from water: A review. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106376 Genotoxicity evaluation of paper industry wastewater prior and post-treatment with laccase producing Pseudomonas putida MTCC 7525. <i>Journal of Cleaner Production</i> , 2022 , 342, 130981 Emerging trends of microbial technology for the production of oligosaccharides from biowaste and their potential application as prebiotic <i>International Journal of Food Microbiology</i> , 2022 , 368, 109610 Microbial production of ketoreductases: Development of a novel high-throughput screening	6.8	6 6

85	Investigation on alpha-galactosidase production by Streptomyces griseoloalbus in a forcefully aerated packed-bed bioreactor operating in solid-state fermentation condition. <i>Applied Biochemistry and Biotechnology</i> , 2010 , 160, 421-7	3.2	5
84	General Considerations about Solid-state Fermentation Processes 2008, 13-25		5
83	Ligninolytic activity of two basidiomycetes cultures in the decomposition of bagasse. <i>Biological Wastes</i> , 1987 , 21, 1-10		5
82	Biorefinery aspects for cost-effective production of nanocellulose and high value-added biocomposites. <i>Fuel</i> , 2021 , 311, 122575	7.1	5
81	Bioengineered Microbes for Soil Health Restoration - Present Status and Future. <i>Bioengineered</i> , 2021 ,	5.7	5
80	Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. <i>Environmental Research</i> , 2021 , 112202	7.9	5
79	Bioconversion of Glycerol into Biofuels pportunities and Challenges. <i>Bioenergy Research</i> , 1	3.1	5
78	Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production. <i>Bioresource Technology</i> , 2021 , 327, 124791	11	5
77	Strategies and advances in the pretreatment of microalgal biomass. <i>Journal of Biotechnology</i> , 2021 , 341, 63-75	3.7	5
76	Performance of a dual-chamber microbial fuel cell as biosensor for on-line measuring ammonium nitrogen in synthetic municipal wastewater. <i>Science of the Total Environment</i> , 2021 , 795, 148755	10.2	5
75	Growth and butanol production by Clostridium sporogenes BE01 in rice straw hydrolysate: kinetics of inhibition by organic acids and the strategies for their removal. <i>Biomass Conversion and Biorefinery</i> , 2014 , 4, 277-283	2.3	4
74	The Alcohol Fermentation Step: The Most Common Ethanologenic Microorganisms Among Yeasts, Bacteria and Filamentous Fungi 2013 , 131-149		4
73	Molecular cloning, overexpression and characterization of the raw-starch-digesting ⊞mylase of Bacillus amyloliquefaciens. <i>Biologia (Poland)</i> , 2010 , 65, 392-398	1.5	4
72	Production of Aroma Compounds 2008 , 356-376		4
71	Process selection for bioconversion of sugar beet pulp into microbial protein. <i>Biological Wastes</i> , 1988 , 26, 71-75		4
70	Integrated approaches to mitigate threats from emerging potentially toxic elements: A way forward for sustainable environmental management <i>Environmental Research</i> , 2022 , 112844	7.9	4
69	Current state of the art biotechnological strategies for conversion of watermelon wastes residues to biopolymers production: A review <i>Chemosphere</i> , 2021 , 290, 133310	8.4	4
68	Nanofluid research advances: Preparation, characteristics and applications in food processing. <i>Food Research International</i> , 2021 , 150, 110751	7	4

67	Enzymatic approaches in the bioprocessing of shellfish wastes. 3 Biotech, 2021, 11, 367	2.8	4
66	Recent trends in microbial nanoparticle synthesis and potential application in environmental technology: a comprehensive review. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 49362-493	38 2	4
65	Evolution in mitigation approaches for petroleum oil-polluted environment: recent advances and future directions. <i>Environmental Science and Pollution Research</i> , 2021 , 1	5.1	4
64	High yield recovery of 2,3-butanediol from fermented broth accumulated on xylose rich sugarcane bagasse hydrolysate using aqueous two-phase extraction system. <i>Bioresource Technology</i> , 2021 , 337, 125463	11	4
63	Preparation, characterization and agri applications of biochar produced by pyrolysis of sewage sludge at different temperatures. <i>Science of the Total Environment</i> , 2021 , 795, 148722	10.2	4
62	Green remediation of the potential hazardous shellfish wastes generated from the processing industries and their bioprospecting. <i>Environmental Technology and Innovation</i> , 2021 , 24, 101979	7	4
61	Upgrading the value of anaerobic fermentation via renewable chemicals production: A sustainable integration for circular bioeconomy. <i>Science of the Total Environment</i> , 2022 , 806, 150312	10.2	4
60	Multifunctional applications of bamboo crop beyond environmental management: an Indian prospective <i>Bioengineered</i> , 2022 , 13, 8893-8914	5.7	4
59	Processing of municipal solid waste resources for a circular economy in China: An overview. <i>Fuel</i> , 2022 , 317, 123478	7.1	4
58	Organic wastes bioremediation and its changing prospects <i>Science of the Total Environment</i> , 2022 , 824, 153889	10.2	4
57	Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy. <i>Journal of Cleaner Production</i> , 2022 , 359, 131897	10.3	4
56	Penicillium janthinellum NCIM1366 shows improved biomass hydrolysis and a larger number of CAZymes with higher induction levels over Trichoderma reesei RUT-C30. <i>Biotechnology for Biofuels</i> , 2020 , 13, 196	7.8	3
55	Biocatalysis 2015 , 391-408		3
54	Production of Pigments 2008, 337-355		3
53	Fermentation of Bagasse by submerged fungal cultures: Effect of nitrogen sources. <i>Biological Wastes</i> , 1988 , 23, 313-317		3
52	Lactic acid production from molasses by mixed population of lactobacilli. <i>Zentralblatt Fur</i> Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene Zweite Naturwissenschaftliche Abteilung: Mikrobiologie Der Landwirtschaft Der Technologie Und Des Umweltschutzes, 1979 , 134, 544-6		3
51	Carbon-based catalyst for environmental bioremediation and sustainability: Updates and perspectives on techno-economics and life cycle assessment <i>Environmental Research</i> , 2022 , 209, 11279	9 3 .9	3
50	Telemedicine in Resource-Limited Setting: Narrative Synthesis of Evidence in Nepalese Context. Smart Homecare Technology and Telehealth, Volume 6, 1-14	1.3	3

49	Characterisation of Laccase from Pycnoporus sanguineus KUM 60953 and KUM 60954. <i>Journal of Biological Sciences</i> , 2008 , 8, 866-873	0.4	3
48	Anaerobic Membrane Bioreactors for Future Green Bioprocesses 2016 , 867-901		3
47	Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper. <i>Biologia (Poland)</i> , 2016 , 71, 265-271	1.5	3
46	Production of fungal endoinulinase in a stirred tank reactor and fructooligosaccharides preparation by crude endoinulinase. <i>Bioresource Technology Reports</i> , 2021 , 15, 100743	4.1	3
45	Production of microalgae with high lipid content and their potential as sources of nutraceuticals <i>Phytochemistry Reviews</i> , 2022 , 1-28	7.7	2
44	Extracellular methionine amino peptidase (MAP) production by Streptomyces gedanensis in solid-state fermentation. <i>Brazilian Archives of Biology and Technology</i> , 2014 , 57, 187-193	1.8	2
43	Solid-State Fermentation of Carrot Pomace for the Production of Inulinase by BGPUP-4. <i>Food Technology and Biotechnology</i> , 2018 , 56, 31-39	2.1	2
42	Chili post-harvest residue-derived nanocellulose composite as a matrix for in vitro cell culture and Hemigraphis colorata blended nanocellulose extends antimicrobial potential. <i>Sustainable Chemistry and Pharmacy</i> , 2022 , 25, 100584	3.9	2
41	Sustainable biochar: A facile strategy for soil and environmental restoration, energygeneration, mitigation of global climate change and circular bioeconomy <i>Chemosphere</i> , 2021 , 293, 133474	8.4	2
40	Production of poly-3-hydroxybutyrate from mixed culture. <i>Biologia (Poland)</i> , 2016 , 71, 736-742	1.5	2
39	Potential Utilisation of Fruit and Vegetable Waste: An Overview. <i>Advances in Science, Technology and Innovation</i> , 2021 , 179-191	0.3	2
38	Sweet sorghum juice as an alternative carbon source and adaptive evolution of Lactobacillus brevis NIE9.3.3 in sweet sorghum juice and biodiesel derived crude glycerol to improve 1, 3 propanediol production. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 106086	6.8	2
37	Current status of global warming potential reduction by cleaner composting. <i>Energy and Environment</i> , 2019 , 0958305X1988241	2.4	1
36	Hyper-production of pullulan from de-oiled rice bran by Aureobasidium pullulans in a stirred tank reactor and its characterization. <i>Bioresource Technology Reports</i> , 2020 , 11, 100494	4.1	1
35	Adsorptive detoxification of fermentation inhibitors in acid pretreated liquor using functionalized polymer designed by molecular simulation. <i>Bioprocess and Biosystems Engineering</i> , 2017 , 40, 1657-1667	3.7	1
34	Microbial Diversity of Nanoparticle Biosynthesis 2015 , 187-203		1
33	Production of potential vaccine against Dermatobia hominis for cattle. <i>Applied Biochemistry and Biotechnology</i> , 2012 , 167, 412-24	3.2	1
32	Production of Spores 2008 , 230-252		1

31	Exploration of fungal spores as a possible storehouse of proteolytic biocatalysts. <i>World Journal of Microbiology and Biotechnology</i> , 2008 , 24, 2897-2901	4.4	1
30	Start-up in anaerobic treatment of natural-rubber effluent. <i>Biological Wastes</i> , 1990 , 33, 143-147		1
29	Fermentative production of lactic acid in presence of some trace elements. <i>Zentralblatt Fur Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene Zweite Naturwissenschaftliche Abteilung: Mikrobiologie Der Landwirtschaft Der Technologie Und Des Umweltschutzes,</i> 1980 , 135, 523-6		1
28	Sustainable processes for treatment and management of seafood solid waste <i>Science of the Total Environment</i> , 2022 , 817, 152951	10.2	1
27	Efflux mediated chlorpyrifos tolerance in Escherichia coli BL21(DE3)		1
26	Bacterial biopolymers: From production to applications in biomedicine. <i>Sustainable Chemistry and Pharmacy</i> , 2022 , 25, 100582	3.9	1
25	Recent advances in circular bioeconomy based clean technologies for sustainable environment. Journal of Water Process Engineering, 2022, 46, 102534	6.7	1
24	Biomass-Derived HMF Oxidation with Various Oxidants. <i>Green Energy and Technology</i> , 2017 , 51-67	0.6	1
23	Chlorpyrifos induced proteome remodelling of Pseudomonas nitroreducens AR-3 potentially aid efficient degradation of the pesticide. <i>Environmental Technology and Innovation</i> , 2021 , 21, 101307	7	1
22	Synthesis and Characterization of Transparent Biodegradable Chitosan: Exopolysaccharide Composite Films Plasticized by Bio-Derived 1,3-Propanediol. <i>Sustainable Chemistry</i> , 2021 , 2, 49-62	3.6	1
21	Promising eco-friendly biomaterials for future biomedicine: Cleaner production and applications of Nanocellulose. <i>Environmental Technology and Innovation</i> , 2021 , 24, 101855	7	1
20	Isobutanol production by Candida glabrata 🛭 potential organism for future fuel demands. <i>Fuel</i> , 2021 , 306, 121634	7.1	1
19	Bacterial bioactive metabolites as therapeutic agents: From production to action. <i>Sustainable Chemistry and Pharmacy</i> , 2022 , 27, 100650	3.9	1
18	Possibility of Detection of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) through Wastewater in Developing Countries. <i>Water (Switzerland)</i> , 2021 , 13, 3412	3	1
17	Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: a review <i>Phytochemistry Reviews</i> , 2022 , 1-23	7.7	1
16	Draft genome of the glucose tolerant lglucosidase producing rare Aspergillus unguis reveals complete cellulolytic machinery with multiple beta-glucosidase genes. <i>Fungal Genetics and Biology</i> , 2021 , 151, 103551	3.9	O
15	Valorization of paper industry rejects by combined thermo-chemical pretreatment and biological conversion to L-lysine. <i>Environmental Technology and Innovation</i> , 2021 , 24, 101882	7	О
14	Microalgae-based carbon capture and utilization: A critical review on current system developments and biomass utilization. <i>Critical Reviews in Environmental Science and Technology</i> ,1-23	11.1	O

13	Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system <i>Chemosphere</i> , 2022 , 134324	8.4	О
12	Neem extract-blended nanocellulose derived from jackfruit peel for antibacterial packagings <i>Environmental Science and Pollution Research</i> , 2022 , 1	5.1	O
11	Kinetics of Solid-state Fermentation 2008 , 48-73		
10	Lactic acid production from molasses by Lactobacillus bulgaricus AU in presence of U, Th, Zr, and Tl. Zentralblatt Fur Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene Zweite Naturwissenschaftliche Abteilung: Mikrobiologie Der Landwirtschaft Der Technologie Und Des		
9	Key Informant Methods: An Innovative Social Mobilization Strategy to enable Communitybased Diagnosis, Treatment and Rehabilitation for People with Disability. <i>Journal of Nepal Health Research Council</i> , 2020 , 18, 147-149	0.9	
8	Optimization of Process Parameters for the Production of Linolenic Acid by CFR C07?in Submerged Fermentation. <i>Food Technology and Biotechnology</i> , 2018 , 56, 96-100	2.1	
7	Febrile Illness Outbreak Investigation in Sundarharicha-5 Foklan Tapu, Morang District. <i>Journal of Nepal Health Research Council</i> , 2019 , 17, 148-152	0.9	
6	Are Health Agencies Designated as Research Centers in Nepal Conducting Adequate Researches?. Journal of Nepal Health Research Council, 2019 , 17, 285-287	0.9	
5	Introduction to the Locomotives and Rail Road Transportation 2017, 3-7		
4	Pretreatment of Douglas Fir Wood Biomass for Improving Saccharification Efficiencies. <i>Journal of ASTM International</i> , 2010 , 7, 102560		
3	Arginine Specific Aminopeptidase from Lactobacillus brevis. <i>Brazilian Archives of Biology and Technology</i> , 2011 , 54, 133-133	1.8	
2	KNOWLEDGE AND PRACTICE ON JUNK FOOD CONSUMPTION AMONG HIGHER LEVEL STUDENTS AT SELECTED EDUCATIONAL INSTITUTIONS OF KATHMANDU, NEPAL. <i>International Journal of Research -GRANTHAALAYAH</i> , 2020 , 8, 306-314	0.2	
1	Nanocellulose in tissue engineering and bioremediation: mechanism of action. <i>Bioengineered</i> , 2022 , 13, 12823-12833	5.7	