Laurent-C Duda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1663079/publications.pdf

Version: 2024-02-01

304743 345221 3,591 36 22 36 citations h-index g-index papers 36 36 36 3629 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nature Chemistry, 2016, 8, 684-691.	13.6	898
2	Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature, 2020, 577, 502-508.	27.8	456
3	Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2. Nature Chemistry, 2018, 10, 288-295.	13.6	414
4	Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ . Journal of the American Chemical Society, 2016, 138, 11211-11218.	13.7	271
5	Induced spin polarization in Cu spacer layers in Co/Cu multilayers. Physical Review Letters, 1994, 72, 1112-1115.	7.8	211
6	Resonant X-Ray Raman Spectra of CuddExcitations inSr2CuO2Cl2. Physical Review Letters, 1998, 80, 5204-5207.	7.8	162
7	Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy and Environmental Science, 2018, 11, 926-932.	30.8	156
8	What Triggers Oxygen Loss in Oxygen Redox Cathode Materials?. Chemistry of Materials, 2019, 31, 3293-3300.	6.7	147
9	Density of states, hybridization, and band-gap evolution inAlxGa1â^'xNalloys. Physical Review B, 1998, 58, 1928-1933.	3.2	76
10	Charging Mechanism of Li ₂ MnO ₃ . Chemistry of Materials, 2020, 32, 3733-3740.	6.7	68
11	Electronic structure of GaN measured using soft-x-ray emission and absorption. Physical Review B, 1996, 54, R17335-R17338.	3.2	64
12	Soft x-ray emission studies of adsorbates. Physical Review Letters, 1992, 69, 812-815.	7.8	59
13	Electronic structure of studied by x-ray photoelectron and x-ray emission spectroscopies. Journal of Physics Condensed Matter, 1998, 10, 4081-4091.	1.8	56
14	Redox Behavior of Vanadium Oxide Nanotubes As Studied by X-ray Photoelectron Spectroscopy and Soft X-ray Absorption Spectroscopy. Chemistry of Materials, 2003, 15, 3227-3232.	6.7	54
15	Oxygen Redox Activity through a Reductive Coupling Mechanism in the P3-Type Nickel-Doped Sodium Manganese Oxide. ACS Applied Energy Materials, 2020, 3, 184-191.	5.1	53
16	Bandlike and excitonic states of oxygen inCuGeO3:Observation using polarized resonant soft-x-ray emission spectroscopy. Physical Review B, 2000, 61, 4186-4189.	3.2	51
17	Magnetic dichroism inL2,3emission of Fe, Co, and Ni following energy-dependent excitation with circularly polarized x rays. Physical Review B, 1994, 50, 16758-16761.	3.2	47
18	Angular anisotropy of resonant inelastic soft x-ray scattering from liquid water. Physical Review B, 2009, 79, .	3.2	42

#	Article	IF	CITATIONS
19	Understanding the redox process upon electrochemical cycling of the P2-Na0.78Co1/2Mn1/3Ni1/6O2 electrode material for sodium-ion batteries. Communications Chemistry, 2020, 3, .	4.5	41
20	Local Electronic Structure of Functional Groups in Glycine As Anion, Zwitterion, and Cation in Aqueous Solution. Journal of Physical Chemistry B, 2009, 113, 16002-16006.	2.6	38
21	Combined Experimental and Ab Initio Multireference Configuration Interaction Study of the Resonant Inelastic X-ray Scattering Spectrum of CO ₂ . Journal of Physical Chemistry C, 2014, 118, 20163-20175.	3.1	36
22	How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi _{0.44} Mn _{1.56} O ₄ with Fixed Oxygen Content. ACS Applied Energy Materials, 2020, 3, 6001-6013.	5.1	33
23	Enhanced oxygen redox reversibility and capacity retention of titanium-substituted Na $<$ sub $>4/7sub>[\hat{a}_i<sub>1/7sub>Ti<sub>1/7sub>Mn<sub>5/7sub>]O<sub>2sub> in sodium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 9941-9953.$	10.3	25
24	Importance of Superstructure in Stabilizing Oxygen Redox in P3â€Na _{0.67} Li _{0.2} Mn _{0.8} O ₂ . Advanced Energy Materials, 2022, 12, .	19.5	25
25	Electronic Structure of Water Molecules Confined in a Micelle Lattice. Journal of Physical Chemistry B, 2009, 113, 8201-8205.	2.6	20
26	Excess Lithium in Transition Metal Layers of Epitaxially Grown Thin Film Cathodes of Li ₂ MnO ₃ Leads to Rapid Loss of Covalency during First Battery Cycle. Journal of Physical Chemistry C, 2019, 123, 28519-28526.	3.1	19
27	Understanding charge compensation mechanisms in Na0.56Mg0.04Ni0.19Mn0.70O2. Communications Chemistry, 2019, 2, .	4.5	15
28	Photoinduced Formation of N2Molecules in Ammonium Compounds. Journal of Physical Chemistry A, 2007, 111, 9662-9669.	2.5	11
29	Anionic Redox and Electrochemical Kinetics of the Na ₂ Mn ₃ O ₇ Cathode Material for Sodium-Ion Batteries. Energy & Source & Sour	5.1	11
30	X-ray absorption spectroscopy and resonant inelastic scattering study of the first lithiation cycle of the Li-ion battery cathode Li2â^2xMnSiO4. Physical Chemistry Chemical Physics, 2014, 16, 3846.	2.8	9
31	Oxygen redox reactions in Li ion battery electrodes studied by resonant inelastic X-ray scattering. Journal of Electron Spectroscopy and Related Phenomena, 2017, 221, 79-87.	1.7	7
32	Enhanced Cycling Stability in the Anion Redox Material P3â€Type Znâ€Substituted Sodium Manganese Oxide. ChemElectroChem, 2022, 9, .	3.4	6
33	Recent high resolution photoemission studies of electronic structure in quasi-one-dimensional conductors. Journal of Electron Spectroscopy and Related Phenomena, 2001, 117-118, 517-526.	1.7	3
34	Polarization-dependent resonant inelastic X-ray scattering study at the Cu L and O K -edges of YBa 2 Cu 3 O 7-x. Journal of Electron Spectroscopy and Related Phenomena, 2018, 224, 38-44.	1.7	3
35	Electronic Structure of the Organic Conductorsl ² -ET2Cu(SCN)2andl ² -ET2Cu[N(CN)2]Br Studied Using Soft X-ray Absorption and Soft X-ray Emission. Journal of Solid State Chemistry, 1999, 143, 1-8.	2.9	2
36	X-ray yield and selectively excited X-ray emission spectra of atenolol and nadolol. Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147, 283-285.	1.7	2