Benjamin Czech

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1663034/publications.pdf

Version: 2024-02-01

30 papers 6,959 citations

279701 23 h-index 30 g-index

40 all docs

40 docs citations

times ranked

40

9061 citing authors

#	Article	IF	CITATIONS
1	miR156-Regulated SPL Transcription Factors Define an Endogenous Flowering Pathway in Arabidopsis thaliana. Cell, 2009, 138, 738-749.	13.5	1,255
2	A genome-scale shRNA resource for transgenic RNAi in Drosophila. Nature Methods, 2011, 8, 405-407.	9.0	733
3	An endogenous small interfering RNA pathway in Drosophila. Nature, 2008, 453, 798-802.	13.7	633
4	Small RNA sorting: matchmaking for Argonautes. Nature Reviews Genetics, 2011, 12, 19-31.	7.7	617
5	Dual Effects of miR156-Targeted <i>SPL</i> Genes and <i>CYP78A5/KLUH</i> on Plastochron Length and Organ Size in <i>Arabidopsis thaliana</i>	3.1	514
6	The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. Genetics, 2015, 201, 843-852.	1.2	502
7	One Loop to Rule Them All: The Ping-Pong Cycle and piRNA-Guided Silencing. Trends in Biochemical Sciences, 2016, 41, 324-337.	3.7	386
8	piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annual Review of Genetics, 2018, 52, 131-157.	3.2	372
9	Hierarchical Rules for Argonaute Loading in Drosophila. Molecular Cell, 2009, 36, 445-456.	4.5	242
10	A Transcriptome-wide RNAi Screen in the Drosophila Ovary Reveals Factors of the Germline piRNA Pathway. Molecular Cell, 2013, 50, 749-761.	4.5	229
11	Regulation of Ribosome Biogenesis and Protein Synthesis Controls Germline Stem Cell Differentiation. Cell Stem Cell, 2016, 18, 276-290.	5.2	199
12	Panoramix enforces piRNA-dependent cotranscriptional silencing. Science, 2015, 350, 339-342.	6.0	162
13	Deep small RNA sequencing from the nematode <i>Ascaris</i> reveals conservation, functional diversification, and novel developmental profiles. Genome Research, 2011, 21, 1462-1477.	2.4	158
14	The let-7–Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature, 2012, 485, 605-610.	13.7	158
15	Probing the initiation and effector phases of the somatic piRNA pathway in <i>Drosophila</i> . Genes and Development, 2010, 24, 2499-2504.	2.7	132
16	ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nature Cell Biology, 2015, 17, 689-696.	4.6	99
17	Production of artificial piRNAs in flies and mice. Rna, 2012, 18, 42-52.	1.6	94
18	Processing of <i>Drosophila</i> endo-siRNAs depends on a specific Loquacious isoform. Rna, 2009, 15, 1886-1895.	1.6	88

#	Article	IF	CITATIONS
19	<i>shutdown</i> is a component of the <i>Drosophila</i> piRNA biogenesis machinery. Rna, 2012, 18, 1446-1457.	1.6	72
20	piRNA-guided co-transcriptional silencing coopts nuclear export factors. ELife, 2019, 8, .	2.8	60
21	Specialization of the <i>Drosophila</i> nuclear export family protein Nxf3 for piRNA precursor export. Genes and Development, 2019, 33, 1208-1220.	2.7	49
22	Preparation of Small RNA Libraries for High-Throughput Sequencing. Cold Spring Harbor Protocols, 2012, 2012, pdb.prot071431.	0.2	35
23	Oncogenic transformation of <i>Drosophila</i> somatic cells induces a functional piRNA pathway. Genes and Development, 2016, 30, 1623-1635.	2.7	33
24	Daedalus and Gasz recruit Armitage to mitochondria, bringing piRNA precursors to the biogenesis machinery. Genes and Development, 2019, 33, 844-856.	2.7	32
25	Dimerisation of the PICTS complex via LC8/Cut-up drives co-transcriptional transposon silencing in Drosophila. ELife, 2021, 10, .	2.8	28
26	Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Drosophila embryogenesis. ELife, 2021, 10, .	2.8	26
27	Channel nuclear pore complex subunits are required for transposon silencing in Drosophila. ELife, 2021, 10, .	2.8	14
28	A Happy 3′ Ending to the piRNA Maturation Story. Cell, 2016, 164, 838-840.	13.5	13
29	Small RNA Library Construction for High-Throughput Sequencing. Methods in Molecular Biology, 2014, 1093, 195-208.	0.4	13
30	An evolutionarily conserved stop codon enrichment at the $5\hat{a} \in \mathbb{R}^2$ ends of mammalian piRNAs. Nature Communications, 2022, 13, 2118.	5.8	3