
Laurence Leherte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1661841/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigation of bound and unbound phosphoserine phosphatase conformations through elastic network models and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 2021, 39, 3958-3974.	3.5	1
2	Molecular Mechanism for the Self-Supported Synthesis of Graphitic Carbon Nitride from Urea Pyrolysis. Journal of Physical Chemistry Letters, 2021, 12, 1396-1406.	4.6	20
3	Multiresolution non-covalent interaction analysis for ligand–protein promolecular electron density distributions. Theoretical Chemistry Accounts, 2021, 140, 1.	1.4	3
4	Structure-based identification of inhibitors disrupting the CD2–CD58 interactions. Journal of Computer-Aided Molecular Design, 2021, 35, 337-353.	2.9	1
5	Structure and Dynamics of an Archeal Monoglyceride Lipase from Palaeococcus ferrophilus as Revealed by Crystallography and In Silico Analysis. Biomolecules, 2021, 11, 533.	4.0	2
6	Temporary Intermediates of L-Trp Along the Reaction Pathway of Human Indoleamine 2,3-Dioxygenase 1 and Identification of an Exo Site. International Journal of Tryptophan Research, 2021, 14, 117864692110529.	2.3	3
7	Influence of the presence of the heme cofactor on the JK-loop structure in indoleamine 2,3-dioxygenase 1. Acta Crystallographica Section D: Structural Biology, 2020, 76, 1211-1221.	2.3	12
8	Interaction of POPC, DPPC, and POPE with the $\hat{l}^{1}\!/_{4}$ opioid receptor: A coarse-grained molecular dynamics study. PLoS ONE, 2019, 14, e0213646.	2.5	6
9	Crystal structures and snapshots along the reaction pathway of human phosphoserine phosphatase. Acta Crystallographica Section D: Structural Biology, 2019, 75, 592-604.	2.3	11
10	Investigating cyclic peptides inhibiting CD2–CD58 interactions through molecular dynamics and molecular docking methods. Journal of Computer-Aided Molecular Design, 2018, 32, 1295-1313.	2.9	5
11	Reduced Point Charge Models of Proteins: Effect of Protein–Water Interactions in Molecular Dynamics Simulations of Ubiquitin Systems. Journal of Physical Chemistry B, 2017, 121, 9771-9784.	2.6	6
12	Parameterization of the ReaxFF reactive force field for a proline-catalyzed aldol reaction. Journal of Computational Chemistry, 2016, 37, 2564-2572.	3.3	12
13	Multiscale design of coarse-grained elastic network-based potentials for the μ opioid receptor. Journal of Molecular Modeling, 2016, 22, 227.	1.8	6
14	Accessing the free energy profile of a ring closure in a proline-catalyzed reaction using a reactive force field. Theoretical Chemistry Accounts, 2016, 135, 1.	1.4	4
15	Reduced point charge models of proteins: assessment based on molecular dynamics simulations. Molecular Simulation, 2016, 42, 289-304.	2.0	3
16	Modeling of Structural, Energetic, and Dynamic Properties of Fewâ€Atom Silver Clusters Embedded in Polynucleotide Strands by Using Molecular Dynamics. ChemPhysChem, 2015, 16, 360-369.	2.1	2
17	Formation and structural, energetic and dynamic properties of cyclodextrin host tubes and included guest molecules. Supramolecular Chemistry, 2015, 27, 90-109.	1.2	4
18	Evaluation of reduced point charge models of proteins through Molecular Dynamics simulations: Application to the Vps27 UIM-1–Ubiquitin complex. Journal of Molecular Graphics and Modelling, 2014, 47, 44-61.	2.4	5

LAURENCE LEHERTE

#	Article	IF	CITATIONS
19	Comparison of reduced point charge models of proteins: Molecular Dynamics simulations of Ubiquitin. Science China Chemistry, 2014, 57, 1340-1354.	8.2	4
20	Quantum mechanical investigations on the role of neutral and negatively charged enamine intermediates in organocatalyzed reactions. Chemical Physics, 2014, 434, 30-36.	1.9	9
21	On the Modularity of the Intrinsic Flexibility of the µ Opioid Receptor: A Computational Study. PLoS ONE, 2014, 9, e115856.	2.5	14
22	Smoothed Gaussian molecular fields: an evaluation of molecular alignment problems. Highlights in Theoretical Chemistry, 2014, , 189-204.	0.0	0
23	Ab initio quantum chemical and ReaxFF-based study of the intramolecular iminium–enamine conversion in a proline-catalyzed reaction. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	9
24	Smoothed Gaussian molecular fields: an evaluation of molecular alignment problems. Theoretical Chemistry Accounts, 2012, 131, 1.	1.4	6
25	Implementation of a Protein Reduced Point Charge Model toward Molecular Dynamics Applications. Journal of Physical Chemistry A, 2011, 115, 12531-12543.	2.5	3
26	Charge density distributions derived from smoothed electrostatic potential functions: design of protein reduced point charge models. Journal of Computer-Aided Molecular Design, 2011, 25, 913-930.	2.9	8
27	Confinement in molecular sieves: The pioneering physical concepts. Journal of Molecular Catalysis A, 2009, 305, 16-23.	4.8	15
28	Coarse Point Charge Models For Proteins From Smoothed Molecular Electrostatic Potentials. Journal of Chemical Theory and Computation, 2009, 5, 3279-3298.	5.3	11
29	Collective motions in protein structures: Applications of elastic network models built from electron density distributions. Computer Physics Communications, 2008, 179, 171-180.	7.5	3
30	Collective motions of rigid fragments in protein structures from smoothed electron density distributions. Journal of Computational Chemistry, 2008, 29, 1472-1489.	3.3	3
31	Can Descriptors of the Electron Density Distribution Help To Distinguish Functional Groups?. Journal of Chemical Information and Modeling, 2008, 48, 1974-1983.	5.4	5
32	Protein-Protein Docking Using Three-Dimensional Reduced Representations and Based on a Genetic Algorithm. , 2008, , 301-323.		1
33	Structural, energetic, and dynamical properties of rotaxanes constituted of α-cyclodextrins and an azobenzene chain. Journal of Molecular Graphics and Modelling, 2007, 26, 104-116.	2.4	10
34	Similarity measures based on Gaussian-type promolecular electron density models: Alignment of small rigid molecules. Journal of Computational Chemistry, 2006, 27, 1800-1816.	3.3	9
35	Influence of conformation on the representation of small flexible molecules at low resolution: alignment of endothiapepsin ligands. Journal of Computer-Aided Molecular Design, 2005, 19, 525-549.	2.9	10
36	Hierarchical analysis of promolecular full electron-density distributions: description of protein structure fragments. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 1254-1265.	2.5	10

3

LAURENCE LEHERTE

#	Article	IF	CITATIONS
37	Evaluation of the protein solvent-accessible surface using reduced representations in terms of critical points of the electron density. Journal of Computational Chemistry, 2004, 25, 1117-1126.	3.3	11
38	Use of Electron Density Critical Points as Chemical Function-Based Reduced Representations of Pharmacological Ligands ChemInform, 2004, 35, no.	0.0	0
39	Use of Electron Density Critical Points as Chemical Function-Based Reduced Representations of Pharmacological Ligands. Journal of Chemical Information and Computer Sciences, 2004, 44, 1394-1401.	2.8	8
40	Description of protein–DNA complexes in terms of electron-density topological features. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 2150-2162.	2.5	9
41	Structural Identification of Local Maxima in Low-Resolution Promolecular Electron Density Distributions. Journal of Physical Chemistry A, 2003, 107, 9875-9886.	2.5	10
42	Interaction between probe molecules and zeolites Physical Chemistry Chemical Physics, 2002, 4, 2416-2423.	2.8	9
43	Application of a Kohonen neural network to the analysis of data regarding the alkylation of toluene with methanol catalyzed by ZSM-5 type zeolites. Computers & Chemistry, 2002, 26, 557-572.	1.2	4
44	A New Graph Descriptor for Molecules Containing Cycles. Application as Screening Criterion for Searching Molecular Structures within Large Databases of Organic Compounds. Journal of Chemical Information and Computer Sciences, 2001, 41, 1437-1445.	2.8	19
45	Dynamics of benzene in zeolite KL. Journal of Molecular Catalysis A, 2001, 166, 147-165.	4.8	18
46	Title is missing!. Journal of Mathematical Chemistry, 2001, 29, 47-83.	1.5	13
47	Linear dependence of the interaction energy on intramolecular distance for adsorbed or clustered diatomic molecules. Molecular Physics, 2000, 98, 1433-1439.	1.7	1
48	Critical Point Representations of Electron Density Maps for the Comparison of Benzodiazepine-Type Ligands. Journal of Chemical Information and Computer Sciences, 2000, 40, 816-832.	2.8	14
49	Comparison of Benzodiazepine-Like Compounds Using Topological Analysis and Genetic Algorithms. SAR and QSAR in Environmental Research, 1998, 8, 195-232.	2.2	14
50	[8] Critical-point analysis in protein electron-density map interpretation. Methods in Enzymology, 1997, 277, 131-157.	1.0	9
51	Analysis of MD Trajectories as a Jump Diffusion Process:  Butene Isomers in Zeolite Types TON and MEL. Journal of Physical Chemistry B, 1997, 101, 4717-4732.	2.6	24
52	Critical Point Analysis of Calculated Electron Density Maps at Medium Resolution: Application to Shape Analysis of Zeolite-Like Systems. Journal of Molecular Modeling, 1997, 3, 156-171.	1.8	9
53	Energetics and diffusion of butene isomers in channel zeolites from molecular dynamics simulations. Journal of Molecular Catalysis A, 1997, 119, 165-176.	4.8	29
54	Similarity and complementarity of molecular shapes: Applicability of a topological analysis approach. Journal of Computer-Aided Molecular Design, 1996, 10, 55-66.	2.9	6

LAURENCE LEHERTE

#	Article	IF	CITATIONS
55	Molecular Mechanical Investigation of the Energetics of Butene Sorbed in H-Ferrierite. Molecular Simulation, 1996, 17, 175-196.	2.0	25
56	Storing, retrieving, and analyzing experimental catalyticdata with the help of artificial intelligence methods. Studies in Surface Science and Catalysis, 1995, 94, 525-535.	1.5	2
57	Topological analysis of electron density maps of chiral cyclodextrin-guest complexes: a steric interaction evaluation. Supramolecular Science, 1995, 2, 209-217.	0.7	7
58	Shape information from a critical point analysis of calculated electron density maps: Application to DNA-drug systems. Journal of Computer-Aided Molecular Design, 1994, 8, 257-272.	2.9	14
59	Computerised structural analysis of zeolitic networks: Conceptualisation of a zeolite scene through graphs comparison. Journal of Computer-Aided Materials Design, 1994, 1, 265-284.	0.7	2
60	Molecular scene analysis: application of a topogical approach to the automated interpretation of protein electron-density maps. Acta Crystallographica Section D: Biological Crystallography, 1994, 50, 155-166.	2.5	11
61	Molecular scene analysis: the integration of direct-methods and artificial-intelligence strategies for solving protein crystal structure. Acta Crystallographica Section D: Biological Crystallography, 1993, 49, 168-178.	2.5	12
62	Molecular graphics applied to the investigations of sorbates in zeolites. , 1993, , 997-1002.		1
63	What does zeolitic water look like?: Modelization by molecular dynamics simulations. International Journal of Quantum Chemistry, 1992, 42, 1291-1326.	2.0	14
64	Self-diffusion of water into a ferrierite-type zeolite by molecular dynamics simulations. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 1959-1970.	1.7	27
65	Study of the water behavior into a ferrierite zeolite by molecular dynamics simulations. Computers & Chemistry, 1991, 15, 273-285.	1.2	10
66	Molecular dynamics studies of sorbates in zeolites: water in ferrierite. Catalysis Today, 1991, 10, 177-200.	4.4	10
67	A Theoretical View and Approach to the Physics and Chemistry of Zeolites and Molecular Sieves. , 1990, , 1-51.		5
68	On the origin of an external surface barrier to sorption in microporous solids: Reply to F. Vign�-Maeder. Journal of Catalysis, 1989, 119, 266-268.	6.2	8
69	Effects of long-range interactions in zeolite-like systems: interaction energies and self-diffusion coefficient of water in ferrierite from molecular dynamics simulation. Journal of Molecular Catalysis, 1989, 54, 426-438.	1.2	22
70	Effects of Long-Range Interactions in Zeolites-Like Systems: Dynamical Behavior of Water in Ferrierite From Molecular Dynamics Simulation. Studies in Surface Science and Catalysis, 1989, , 773-783.	1.5	5
71	Determination of the self-diffusion coefficient of water in ferrierite by molecular dynamics. Chemical Physics Letters, 1988, 145, 237-241.	2.6	40
72	Monte Carlo Simulations of Water Interaction with a Ferrlerite Type Zeolite Structure. Studies in Surface Science and Catalysis, 1988, , 293-300.	1.5	4

#	Article	IF	CITATIONS
73	Topological Analysis of Proteins as Derived from Medium and High-resolution Electron Density: Applications to Electrostatic Properties. , 0, , 285-315.		8
74	Development of a Genetic Algorithm Method Especially Designed for the Comparison of Molecular Models: Application to the Elucidation of the Benzodiazepine Receptor Pharmacophore. , 0, , 497-509.		5
75	Analysis of Three-Dimensional Protein Images. Journal of Artificial Intelligence Research, 0, 7, 125-159.	7.0	13