Tao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/166182/publications.pdf Version: 2024-02-01

ΤλΟΙΙΙΙ

#	Article	IF	CITATIONS
1	Genetic-code-expanded cell-based therapy for treating diabetes in mice. Nature Chemical Biology, 2022, 18, 47-55.	8.0	17
2	Recent Advances in Genetic Code Expansion Techniques for Protein Phosphorylation Studies. Journal of Molecular Biology, 2022, 434, 167406.	4.2	10
3	Recent Advances in Genetic Code Expansion: From Cell Engineering to Protein Design. Journal of Molecular Biology, 2022, , 167565.	4.2	0
4	Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nature Communications, 2022, 13, 1204.	12.8	40
5	Efficient generation of locus-specific human CAR-T cells with CRISPR/cCas12a. STAR Protocols, 2022, 3, 101321.	1.2	2
6	Expanding the Structural Diversity of Protein Building Blocks with Noncanonical Amino Acids Biosynthesized from Aromatic Thiols. Angewandte Chemie, 2021, 133, 10128-10136.	2.0	2
7	Expanding the Structural Diversity of Protein Building Blocks with Noncanonical Amino Acids Biosynthesized from Aromatic Thiols. Angewandte Chemie - International Edition, 2021, 60, 10040-10048.	13.8	15
8	A General Supramolecular Approach to Regulate Protein Functions by Cucurbit[7]uril and Unnatural Amino Acid Recognition. Angewandte Chemie - International Edition, 2021, 60, 11196-11200.	13.8	20
9	A General Supramolecular Approach to Regulate Protein Functions by Cucurbit[7]uril and Unnatural Amino Acid Recognition. Angewandte Chemie, 2021, 133, 11296-11300.	2.0	0
10	When Supramolecular Chemistry Meets Chemical Biology: New Strategies to Target Proteins through Hostâ€Guest Interactions. ChemBioChem, 2021, 22, 2914-2917.	2.6	4
11	Improving the efficiency of CRISPR-Cas12a-based genome editing with site-specific covalent Cas12a-crRNA conjugates. Molecular Cell, 2021, 81, 4747-4756.e7.	9.7	26
12	Dynamic crotonylation of EB1 by TIP60 ensures accurate spindle positioning in mitosis. Nature Chemical Biology, 2021, 17, 1314-1323.	8.0	29
13	Site-specific protein modification by genetic encoded disulfide compatible thiols. Chinese Chemical Letters, 2020, 31, 163-166.	9.0	17
14	An Orthogonal Tyrosyl-tRNA Synthetase/tRNA Pair from a Thermophilic Bacterium for an Expanded Eukaryotic Genetic Code. Biochemistry, 2020, 59, 90-99.	2.5	9
15	Efficient Selection Scheme for Incorporating Noncanonical Amino Acids Into Proteins in Saccharomyces cerevisiae. Frontiers in Bioengineering and Biotechnology, 2020, 8, 569191.	4.1	4
16	Optical Control of a CRISPR/Cas9 System for Gene Editing by Using Photolabile crRNA. Angewandte Chemie - International Edition, 2020, 59, 20895-20899.	13.8	31
17	Step further towards targeted senolytic therapy: therapeutic potential of uPAR-CAR T cells for senescence-related diseases. Signal Transduction and Targeted Therapy, 2020, 5, 155.	17.1	6
18	Thermophilic Pyrrolysyl-tRNA Synthetase Mutants for Enhanced Mammalian Genetic Code Expansion. ACS Synthetic Biology, 2020, 9, 2723-2736.	3.8	10

Tao Liu

#	Article	IF	CITATIONS
19	Rational design of minimum CRISPR guide RNA by site-specific Cas9–RNA conjugation. Chemical Communications, 2020, 56, 7515-7518.	4.1	7
20	Improving the efficiency of precise genome editing with site-specific Cas9-oligonucleotide conjugates. Science Advances, 2020, 6, eaaz0051.	10.3	78
21	Antibody Conjugates-Recent Advances and Future Innovations. Antibodies, 2020, 9, 2.	2.5	75
22	A novel prognostic risk score model based on immune-related genes in patients with stage IV colorectal cancer. Bioscience Reports, 2020, 40, .	2.4	9
23	Enhancing Protein Stability with Genetically Encoded Noncanonical Amino Acids. Journal of the American Chemical Society, 2018, 140, 15997-16000.	13.7	49
24	Proteomic Identification of Protein Tyrosine Phosphatase and Substrate Interactions in Living Mammalian Cells by Genetic Encoding of Irreversible Enzyme Inhibitors. Journal of the American Chemical Society, 2018, 140, 13253-13259.	13.7	32
25	Therapeutic applications of genetic code expansion. Synthetic and Systems Biotechnology, 2018, 3, 150-158.	3.7	50
26	Construction and Screening of a Lentiviral Secretome Library. Cell Chemical Biology, 2017, 24, 767-771.e3.	5.2	9
27	Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria. Nature Chemical Biology, 2017, 13, 845-849.	8.0	105
28	Enhancing protein stability with extended disulfide bonds. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5910-5915.	7.1	136
29	Rational Design of Dual Agonist-Antibody Fusions as Long-acting Therapeutic Hormones. ACS Chemical Biology, 2016, 11, 2991-2995.	3.4	1
30	Recombinant thiopeptides containing noncanonical amino acids. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3615-3620.	7.1	58
31	An Epitopeâ€Specific Respiratory Syncytial Virus Vaccine Based on an Antibody Scaffold. Angewandte Chemie - International Edition, 2015, 54, 14531-14534.	13.8	13
32	Functional human antibody CDR fusions as long-acting therapeutic endocrine agonists. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1356-1361.	7.1	30
33	Homogeneously modified immunoglobulin domains for therapeutic application. Current Opinion in Chemical Biology, 2015, 28, 66-74.	6.1	14
34	Genetic Incorporation of ε- <i>N</i> -2-Hydroxyisobutyryl-lysine into Recombinant Histones. ACS Chemical Biology, 2015, 10, 1599-1603.	3.4	52
35	Rational Design of Antibody Protease Inhibitors. Journal of the American Chemical Society, 2015, 137, 4042-4045.	13.7	14
36	An Immunosuppressive Antibody–Drug Conjugate. Journal of the American Chemical Society, 2015, 137, 3229-3232.	13.7	95

Tao Liu

#	Article	IF	CITATIONS
37	Structure-Based Optimization of a Peptidyl Inhibitor against Calcineurin-Nuclear Factor of Activated T Cell (NFAT) Interaction. Journal of Medicinal Chemistry, 2014, 57, 7792-7797.	6.4	10
38	Rational Design of CXCR4 Specific Antibodies with Elongated CDRs. Journal of the American Chemical Society, 2014, 136, 10557-10560.	13.7	31
39	Efficient Delivery of Cyclic Peptides into Mammalian Cells with Short Sequence Motifs. ACS Chemical Biology, 2013, 8, 423-431.	3.4	160
40	Cyclic Peptide Inhibitors of HIV-1 Capsid-Human Lysyl-tRNA Synthetase Interaction. ACS Chemical Biology, 2012, 7, 761-769.	3.4	34
41	High-Throughput Screening of One-Bead-One-Compound Libraries: Identification of Cyclic Peptidyl Inhibitors against Calcineurin/NFAT Interaction. ACS Combinatorial Science, 2011, 13, 537-546.	3.8	63
42	Membrane Permeable Cyclic Peptidyl Inhibitors against Human Peptidylprolyl Isomerase Pin1. Journal of Medicinal Chemistry, 2010, 53, 2494-2501.	6.4	78
43	Synthesis and screening of a cyclic peptide library: Discovery of small-molecule ligands against human prolactin receptor. Bioorganic and Medicinal Chemistry, 2009, 17, 1026-1033.	3.0	51
44	Non-viral gene delivery carrier of probe type host molecule—Interactions between DNA and β-cyclodextrin derivative complexes (I). Science Bulletin, 2006, 51, 530-535.	1.7	2
45	Molecular Binding Behavior of Pyridine-2,6-dicarboxamide-Bridged Bis(β-cyclodextrin) with Oligopeptides:  Switchable Molecular Binding Mode. Bioconjugate Chemistry, 2004, 15, 300-306.	3.6	25
46	Creation of a Yeast Strain with Coâ ${\in}{f t}$ ranslationally Acylated Nucleosomes. Angewandte Chemie, 0, , .	2.0	0
47	Creation of a Yeast Strain with Coâ€translationally Acylated Nucleosomes. Angewandte Chemie - International Edition, O	13.8	3