
Anuradha Krishnan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1661442/publications.pdf Version: 2024-02-01

ΔΝΠΡΑΠΗΛ ΚΡΙSΗΝΑΝ

#	Article	IF	CITATIONS
1	Lipid-Induced Signaling Causes Release of Inflammatory Extracellular Vesicles From Hepatocytes. Gastroenterology, 2016, 150, 956-967.	1.3	373
2	Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice. Journal of Hepatology, 2018, 69, 676-686.	3.7	119
3	Integrin β1-enriched extracellular vesicles mediate monocyte adhesion and promote liver inflammation in murine NASH. Journal of Hepatology, 2019, 71, 1193-1205.	3.7	112
4	IRE1A Stimulates Hepatocyte-Derived Extracellular Vesicles That Promote Inflammation in Mice With Steatohepatitis. Gastroenterology, 2020, 159, 1487-1503.e17.	1.3	105
5	Lumican, an extracellular matrix proteoglycan, is a novel requisite for hepatic fibrosis. Laboratory Investigation, 2012, 92, 1712-1725.	3.7	103
6	TRAIL receptor deletion in mice suppresses the inflammation of nutrient excess. Journal of Hepatology, 2015, 62, 1156-1163.	3.7	85
7	A Hippo and Fibroblast Growth Factor Receptor Autocrine Pathway in Cholangiocarcinoma. Journal of Biological Chemistry, 2016, 291, 8031-8047.	3.4	74
8	Humanized mice efficiently engrafted with fetal hepatoblasts and syngeneic immune cells develop human monocytes and NK cells. Journal of Hepatology, 2016, 65, 334-343.	3.7	73
9	A longitudinal study of whole body, tissue, and cellular physiology in a mouse model of fibrosing NASH with high fidelity to the human condition. American Journal of Physiology - Renal Physiology, 2017, 312, G666-G680.	3.4	55
10	YAP-associated chromosomal instability and cholangiocarcinoma in mice. Oncotarget, 2018, 9, 5892-5905.	1.8	45
11	Prohibitin 1 suppresses liver cancer tumorigenesis in mice and human hepatocellular and cholangiocarcinoma cells. Hepatology, 2017, 65, 1249-1266.	7.3	44
12	Deregulated methionine adenosyltransferase α1, câ€Myc, and Maf proteins together promote cholangiocarcinoma growth in mice and humans‡. Hepatology, 2016, 64, 439-455.	7.3	39
13	Development and characterization of cholangioids from normal and diseased human cholangiocytes as an in vitro model to study primary sclerosing cholangitis. Laboratory Investigation, 2017, 97, 1385-1396.	3.7	39
14	Targeted Apoptosis of Ductular Reactive Cells Reduces Hepatic Fibrosis in a Mouse Model of Cholestasis. Hepatology, 2020, 72, 1013-1028.	7.3	22
15	Diet Mimicking "Fast Food―Causes Structural Changes to the Retina Relevant to Age-Related Macular Degeneration. Current Eye Research, 2020, 45, 726-732.	1.5	20
16	Activated cholangiocytes release macrophage-polarizing extracellular vesicles bearing the DAMP S100A11. American Journal of Physiology - Cell Physiology, 2019, 317, C788-C799.	4.6	19
17	Biliary tract instillation of a SMAC mimetic induces TRAIL-dependent acute sclerosing cholangitis-like injury in mice. Cell Death and Disease, 2018, 8, e2535-e2535.	6.3	9
18	Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Receptor Deficiency Promotes the Ductular Reaction, Macrophage Accumulation, and Hepatic Fibrosis in the Abcb4 Mouse. American Journal of Pathology, 2020, 190, 1284-1297.	3.8	7

#	Article	IF	CITATIONS
19	Knockout of sulfatase 2 is associated with decreased steatohepatitis and fibrosis in a mouse model of nonalcoholic fatty liver disease. American Journal of Physiology - Renal Physiology, 2020, 319, G333-G344.	3.4	4