
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/166140/publications.pdf Version: 2024-02-01

IAN C. MILLS

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure. Science, 2004, 303, 495-499.	6.0	1,535
3	Curvature of clathrin-coated pits driven by epsin. Nature, 2002, 419, 361-366.	13.7	918
4	The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO Journal, 2011, 30, 2719-2733.	3.5	530
5	GTPase activity of dynamin and resulting conformation change are essential for endocytosis. Nature, 2001, 410, 231-235.	13.7	428
6	Principles for the post-GWAS functional characterization of cancer risk loci. Nature Genetics, 2011, 43, 513-518.	9.4	392
7	The Androgen Receptor Induces a Distinct Transcriptional Program in Castration-Resistant Prostate Cancer in Man. Cancer Cell, 2013, 23, 35-47.	7.7	354
8	ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth. Journal of Clinical Investigation, 2012, 122, 4621-4634.	3.9	336
9	COP and clathrin-coated vesicle budding: different pathways, common approaches. Current Opinion in Cell Biology, 2004, 16, 379-391.	2.6	266
10	Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study. EBioMedicine, 2015, 2, 1133-1144.	2.7	260
11	Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO Journal, 2011, 30, 3019-3027.	3.5	247
12	New androgen receptor genomic targets show an interaction with the ETS1 transcription factor. EMBO Reports, 2007, 8, 871-878.	2.0	240
13	O-GlcNAc Transferase Integrates Metabolic Pathways to Regulate the Stability of c-MYC in Human Prostate Cancer Cells. Cancer Research, 2013, 73, 5277-5287.	0.4	234
14	Role of the AP2 β-Appendage Hub in Recruiting Partners for Clathrin-Coated Vesicle Assembly. PLoS Biology, 2006, 4, e262.	2.6	225
15	EpsinR. Journal of Cell Biology, 2003, 160, 213-222.	2.3	218
16	Involvement of the endosomal autoantigen EEA1 in homotypic fusion of early endosomes. Current Biology, 1998, 8, 881-884.	1.8	213
17	Clathrin Adaptor epsinR Is Required for Retrograde Sorting on Early Endosomal Membranes. Developmental Cell, 2004, 6, 525-538.	3.1	213
18	Structural basis for the nuclear import of the human androgen receptor. Journal of Cell Science, 2008, 121, 957-968.	1.2	193

#	Article	IF	CITATIONS
19	Synthetic lethality between androgen receptor signalling and the PARP pathway in prostate cancer. Nature Communications, 2017, 8, 374.	5.8	180
20	Evolving nature of the AP2 α-appendage hub during clathrin-coated vesicle endocytosis. EMBO Journal, 2004, 23, 4371-4383.	3.5	177
21	IRE11±-XBP1s pathway promotes prostate cancer by activating c-MYC signaling. Nature Communications, 2019, 10, 323.	5.8	158
22	Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. BMJ: British Medical Journal, 2018, 360, j5757.	2.4	153
23	Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nature Reviews Cancer, 2014, 14, 187-198.	12.8	152
24	Thiol isomerases negatively regulate the cellular shedding activity of ADAM17. Biochemical Journal, 2010, 428, 439-450.	1.7	149
25	Somatic Genomics and Clinical Features of Lung Adenocarcinoma: A Retrospective Study. PLoS Medicine, 2016, 13, e1002162.	3.9	148
26	Exome Sequencing of Prostate Cancer Supports the Hypothesis of Independent Tumour Origins. European Urology, 2013, 63, 347-353.	0.9	134
27	Gene regulatory mechanisms underpinning prostate cancer susceptibility. Nature Genetics, 2016, 48, 387-397.	9.4	119
28	The importance of DNA methylation in prostate cancer development. Journal of Steroid Biochemistry and Molecular Biology, 2017, 166, 1-15.	1.2	116
29	Endosomal Localization and Receptor Dynamics Determine Tyrosine Phosphorylation of Hepatocyte Growth Factor-Regulated Tyrosine Kinase Substrate. Molecular and Cellular Biology, 2000, 20, 7685-7692.	1.1	114
30	Genetic and functional analyses implicate the <i>NUDT11</i> , <i>HNF1B</i> , and <i>SLC22A3</i> genes in prostate cancer pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11252-11257.	3.3	102
31	Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer. Cell Reports, 2017, 19, 2045-2059.	2.9	99
32	c-Myc Antagonises the Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks. EBioMedicine, 2017, 18, 83-93.	2.7	96
33	The Mitochondrial and Autosomal Mutation Landscapes of Prostate Cancer. European Urology, 2013, 63, 702-708.	0.9	91
34	Divergent androgen regulation of unfolded protein response pathways drives prostate cancer. EMBO Molecular Medicine, 2015, 7, 788-801.	3.3	87
35	Validation of a Metastatic Assay using biopsies to improve risk stratification in patients with prostate cancer treated with radical radiation therapy. Annals of Oncology, 2018, 29, 215-222.	0.6	86
36	Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy, 2013, 9, 1475-1490.	4.3	83

#	Article	IF	CITATIONS
37	The developing role of receptors and adaptors. Nature Reviews Cancer, 2006, 6, 403-409.	12.8	81
38	UAP1 is overexpressed in prostate cancer and is protective against inhibitors of N-linked glycosylation. Oncogene, 2015, 34, 3744-3750.	2.6	80
39	The role of glycans in the development and progression of prostate cancer. Nature Reviews Urology, 2016, 13, 324-333.	1.9	79
40	Localization of polymorphic N-acetyltransferase (NAT2) in tissues of inbred mice. Pharmacogenetics and Genomics, 1997, 7, 121-130.	5.7	78
41	Glycosylation is an Androgen-Regulated Process Essential for Prostate Cancer Cell Viability. EBioMedicine, 2016, 8, 103-116.	2.7	76
42	LYRIC/AEG-1 Is Targeted to Different Subcellular Compartments by Ubiquitinylation and Intrinsic Nuclear Localization Signals. Clinical Cancer Research, 2009, 15, 3003-3013.	3.2	75
43	HES6 drives a critical <scp>AR</scp> transcriptional programme to induce castrationâ€resistant prostate cancer through activation of an <scp>E</scp> 2 <scp>F</scp> 1â€mediated cell cycle network. EMBO Molecular Medicine, 2014, 6, 651-661.	3.3	74
44	PIAS1 Is Increased in Human Prostate Cancer and Enhances Proliferation through Inhibition of p21. American Journal of Pathology, 2012, 180, 2097-2107.	1.9	72
45	Inhibition of O-GlcNAc transferase activity reprograms prostate cancer cell metabolism. Oncotarget, 2016, 7, 12464-12476.	0.8	71
46	The induction of core pluripotency master regulators in cancers defines poor clinical outcomes and treatment resistance. Oncogene, 2019, 38, 4412-4424.	2.6	70
47	The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer. Oncotarget, 2015, 6, 34358-34374.	0.8	68
48	Alterations in β atenin expression and localization in prostate cancer. Prostate, 2008, 68, 1196-1205.	1.2	67
49	ChIPping away at gene regulation. EMBO Reports, 2008, 9, 337-343.	2.0	67
50	Huntingtin interacting protein 1 modulates the transcriptional activity of nuclear hormone receptors. Journal of Cell Biology, 2005, 170, 191-200.	2.3	66
51	Lipid degradation promotes prostate cancer cell survival. Oncotarget, 2017, 8, 38264-38275.	0.8	64
52	Molecular Subtyping of Primary Prostate Cancer Reveals Specific and Shared Target Genes of Different ETS Rearrangements. Neoplasia, 2012, 14, 600-IN15.	2.3	63
53	Androgen-regulated metabolism and biosynthesis in prostate cancer. Endocrine-Related Cancer, 2014, 21, T57-T66.	1.6	61
54	Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Experimental Cell Research, 2015, 333, 21-38.	1.2	61

#	Article	IF	CITATIONS
55	Tumor Necrosis Factor Receptor Expression and Signaling in Renal Cell Carcinoma. American Journal of Pathology, 2010, 177, 943-954.	1.9	58
56	High OGT activity is essential for MYC-driven proliferation of prostate cancer cells. Theranostics, 2019, 9, 2183-2197.	4.6	58
57	Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer. Oncotarget, 2015, 6, 12587-12602.	0.8	58
58	Nuclear <scp>ARRB</scp> 1 induces pseudohypoxia and cellular metabolism reprogramming in prostate cancer. EMBO Journal, 2014, 33, 1365-1382.	3.5	57
59	The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer. European Urology, 2016, 70, 214-218.	0.9	56
60	CTCF modulates Estrogen Receptor function through specific chromatin and nuclear matrix interactions. Nucleic Acids Research, 2016, 44, 10588-10602.	6.5	53
61	Regulation of endosome fusion. Molecular Membrane Biology, 1999, 16, 73-79.	2.0	52
62	Promoter methylation correlates with reduced Smad4 expression in advanced prostate cancer. Prostate, 2008, 68, 661-674.	1.2	51
63	Impacts of combining anti-PD-L1 immunotherapy and radiotherapy on the tumour immune microenvironment in a murine prostate cancer model. British Journal of Cancer, 2020, 123, 1089-1100.	2.9	51
64	Inhibition of Endosome Fusion by Wortmannin Persists in the Presence of Activated rab5. Molecular Biology of the Cell, 1998, 9, 323-332.	0.9	48
65	Shared common variants in prostate cancer and blood lipids. International Journal of Epidemiology, 2014, 43, 1205-1214.	0.9	45
66	Salt-Inducible Kinase 2 Regulates Mitotic Progression and Transcription in Prostate Cancer. Molecular Cancer Research, 2015, 13, 620-635.	1.5	45
67	Dual transcriptome of the immediate neutrophil and Candida albicans interplay. BMC Genomics, 2017, 18, 696.	1.2	45
68	Elevated NCOR1 disrupts a network of dietary-sensing nuclear receptors in bladder cancer cells. Carcinogenesis, 2009, 30, 449-456.	1.3	44
69	Drivers of AR indifferent anti-androgen resistance in prostate cancer cells. Scientific Reports, 2019, 9, 13786.	1.6	44
70	ELOVL5 Is a Critical and Targetable Fatty Acid Elongase in Prostate Cancer. Cancer Research, 2021, 81, 1704-1718.	0.4	44
71	Vascular normalisation as the stepping stone into tumour microenvironment transformation. British Journal of Cancer, 2021, 125, 324-336.	2.9	44
72	Time-varying analysis of electrodermal activity during exercise. PLoS ONE, 2018, 13, e0198328.	1.1	43

#	Article	IF	CITATIONS
73	The interplay between clathrin-coated vesicles and cell signalling. Seminars in Cell and Developmental Biology, 2007, 18, 459-470.	2.3	42
74	The Molecular Signature of the Stroma Response in Prostate Cancer-Induced Osteoblastic Bone Metastasis Highlights Expansion of Hematopoietic and Prostate Epithelial Stem Cell Niches. PLoS ONE, 2014, 9, e114530.	1.1	42
75	Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nature Communications, 2021, 12, 1236.	5.8	40
76	Abundant Genetic Overlap between Blood Lipids and Immune-Mediated Diseases Indicates Shared Molecular Genetic Mechanisms. PLoS ONE, 2015, 10, e0123057.	1.1	40
77	A new look towards BAC-based array CGH through a comprehensive comparison with oligo-based array CGH. BMC Genomics, 2007, 8, 84.	1.2	39
78	N-Linked Glycosylation Supports Cross-Talk between Receptor Tyrosine Kinases and Androgen Receptor. PLoS ONE, 2013, 8, e65016.	1.1	39
79	The cancer-associated cell migration protein TSPAN1 is under control of androgens and its upregulation increases prostate cancer cell migration. Scientific Reports, 2017, 7, 5249.	1.6	39
80	Computer-aided drug discovery of Myc-Max inhibitors as potential therapeutics for prostate cancer. European Journal of Medicinal Chemistry, 2018, 160, 108-119.	2.6	38
81	<i>HNF1B</i> variants associate with promoter methylation and regulate gene networks activated in prostate and ovarian cancer. Oncotarget, 2016, 7, 74734-74746.	0.8	38
82	Choline Kinase Alpha as an Androgen Receptor Chaperone and Prostate Cancer Therapeutic Target. Journal of the National Cancer Institute, 2016, 108, djv371.	3.0	37
83	Novel Role of Androgens in Mitochondrial Fission and Apoptosis. Molecular Cancer Research, 2011, 9, 1067-1077.	1.5	36
84	Slug-Dependent Upregulation of L1CAM Is Responsible for the Increased Invasion Potential of Pancreatic Cancer Cells following Long-Term 5-FU Treatment. PLoS ONE, 2015, 10, e0123684.	1.1	35
85	Disseminated tumor cells and their prognostic significance in nonmetastatic prostate cancer patients. International Journal of Cancer, 2013, 133, 149-155.	2.3	34
86	The ETS family member GABPÎ \pm modulates androgen receptor signalling and mediates an aggressive phenotype in prostate cancer. Nucleic Acids Research, 2014, 42, 6256-6269.	6.5	33
87	Meta-analysis of prostate cancer gene expression data identifies a novel discriminatory signature enriched for glycosylating enzymes. BMC Medical Genomics, 2014, 7, 513.	0.7	33
88	Identification of shared genetic variants between schizophrenia and lung cancer. Scientific Reports, 2018, 8, 674.	1.6	33
89	miR-191 promotes radiation resistance of prostate cancer through interaction with RXRA. Cancer Letters, 2020, 473, 107-117.	3.2	33
90	Pro-neural transcription factors as cancer markers. BMC Medical Genomics, 2008, 1, 17.	0.7	32

IAN G MILLS

#	Article	IF	CITATIONS
91	Cell cycle-coupled expansion of AR activity promotes cancer progression. Oncogene, 2017, 36, 1655-1668.	2.6	32
92	Low Expression of miR-424-3p is Highly Correlated with Clinical Failure in Prostate Cancer. Scientific Reports, 2019, 9, 10662.	1.6	32
93	Inhibition of O-GlcNAc Transferase Renders Prostate Cancer Cells Dependent on CDK9. Molecular Cancer Research, 2020, 18, 1512-1521.	1.5	32
94	Mining Human Prostate Cancer Datasets: The "camcAPP―Shiny App. EBioMedicine, 2017, 17, 5-6.	2.7	31
95	The Oncogene Metadherin Interacts with the Known Splicing Proteins YTHDC1, Sam68 and T-STAR and Plays a Novel Role in Alternative mRNA Splicing. Cancers, 2019, 11, 1233.	1.7	31
96	A role for neurotensin in bicalutamide resistant prostate cancer cells. Prostate, 2007, 67, 190-202.	1.2	30
97	Genome-wide analysis of AR binding and comparison with transcript expression in primary human fetal prostate fibroblasts and cancer associated fibroblasts. Molecular and Cellular Endocrinology, 2018, 471, 1-14.	1.6	30
98	A fourâ€group urine risk classifier for predicting outcomes in patients with prostate cancer. BJU International, 2019, 124, 609-620.	1.3	30
99	Glucocorticoid receptor and Klf4 co-regulate anti-inflammatory genes in keratinocytes. Molecular and Cellular Endocrinology, 2015, 412, 281-289.	1.6	28
100	A Genetic Risk Score to Personalize Prostate Cancer Screening, Applied to Population Data. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1731-1738.	1.1	27
101	Hyperpolarised 13C-MRI identifies the emergence of a glycolytic cell population within intermediate-risk human prostate cancer. Nature Communications, 2022, 13, 466.	5.8	27
102	Solitary and Repetitive Binding Motifs for the AP2 Complex α-Appendage in Amphiphysin and Other Accessory Proteins. Journal of Biological Chemistry, 2008, 283, 5099-5109.	1.6	26
103	Molecular Subgroup of Primary Prostate Cancer Presenting with Metastatic Biology. European Urology, 2017, 72, 509-518.	0.9	26
104	Bromodomain protein 4 discriminates tissue-specific super-enhancers containing disease-specific susceptibility loci in prostate and breast cancer. BMC Genomics, 2017, 18, 270.	1.2	26
105	Genetics of lipid metabolism in prostate cancer. Nature Genetics, 2018, 50, 169-171.	9.4	25
106	Bromodomain-containing proteins in prostate cancer. Molecular and Cellular Endocrinology, 2018, 462, 31-40.	1.6	25
107	Independence of HIF1a and androgen signaling pathways in prostate cancer. BMC Cancer, 2020, 20, 469.	1.1	25
108	Nuclear Trafficking and Functions of Endocytic Proteins Implicated in Oncogenesis. Traffic, 2009, 10, 1209-1220.	1.3	24

#	Article	IF	CITATIONS
109	Macroautophagic cargo sequestration assays. Methods, 2015, 75, 25-36.	1.9	24
110	Propagation of human prostate tissue from induced pluripotent stem cells. Stem Cells Translational Medicine, 2020, 9, 734-745.	1.6	24
111	Africanâ€specific improvement of a polygenic hazard score for age at diagnosis of prostate cancer. International Journal of Cancer, 2021, 148, 99-105.	2.3	24
112	O-GlcNAc Transferase – An Auxiliary Factor or a Full-blown Oncogene?. Molecular Cancer Research, 2021, 19, 555-564.	1.5	23
113	Inhibition of O-GlcNAc transferase activates tumor-suppressor gene expression in tamoxifen-resistant breast cancer cells. Scientific Reports, 2020, 10, 16992.	1.6	21
114	Mapping Protein–DNA Interactions Using ChIP-Sequencing. Methods in Molecular Biology, 2012, 809, 157-173.	0.4	20
115	Chromatin binding by the androgen receptor in prostate cancer. Molecular and Cellular Endocrinology, 2012, 360, 44-51.	1.6	20
116	A differential protein solubility approach for the depletion of highly abundant proteins in plasma using ammonium sulfate. Analyst, The, 2015, 140, 8109-8117.	1.7	20
117	A gene signature associated with PTEN activation defines good prognosis intermediate risk prostate cancer cases. Journal of Pathology: Clinical Research, 2018, 4, 103-113.	1.3	20
118	The β2-Adrenergic Receptor Is a Molecular Switch for Neuroendocrine Transdifferentiation of Prostate Cancer Cells. Molecular Cancer Research, 2019, 17, 2154-2168.	1.5	20
119	Changes of 5-hydroxymethylcytosine distribution during myeloid and lymphoid differentiation of CD34+ cells. Epigenetics and Chromatin, 2016, 9, 21.	1.8	19
120	Calcium Channel Blocker Use and Risk of Prostate Cancer by <i>TMPRSS2:ERG</i> Gene Fusion Status. Prostate, 2017, 77, 282-290.	1.2	18
121	CDK9 Inhibition Induces a Metabolic Switch that Renders Prostate Cancer Cells Dependent on Fatty Acid Oxidation. Neoplasia, 2019, 21, 713-720.	2.3	18
122	Ductal adenocarcinoma of the prostate: A systematic review and metaâ€analysis of incidence, presentation, prognosis, and management. BJUI Compass, 2021, 2, 13-23.	0.7	18
123	Quantitative ELISAs for serum soluble LHCGR and hCG-LHCGR complex: potential diagnostics in first trimester pregnancy screening for stillbirth, Down's syndrome, preterm delivery and preeclampsia. Reproductive Biology and Endocrinology, 2012, 10, 113.	1.4	17
124	Pleiotropic Analysis of Lung Cancer and Blood Triglycerides. Journal of the National Cancer Institute, 2016, 108, djw167.	3.0	17
125	The Unfolded Protein Response: A Novel Therapeutic Target for Poor Prognostic <i>BRAF</i> Mutant Colorectal Cancer. Molecular Cancer Therapeutics, 2018, 17, 1280-1290.	1.9	17
126	Derivation and Application of Molecular Signatures to Prostate Cancer: Opportunities and Challenges. Cancers, 2021, 13, 495.	1.7	16

#	Article	IF	CITATIONS
127	Additional SNPs improve risk stratification of a polygenic hazard score for prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 532-541.	2.0	16
128	A Systematic Review of Prostate Cancer Heterogeneity: Understanding the Clonal Ancestry of Multifocal Disease. European Urology Oncology, 2021, 4, 358-369.	2.6	16
129	A feedback loop between the androgen receptor and 6-phosphogluoconate dehydrogenase (6PGD) drives prostate cancer growth. ELife, 2021, 10, .	2.8	16
130	A reciprocal feedback between the PDZ binding kinase and androgen receptor drives prostate cancer. Oncogene, 2019, 38, 1136-1150.	2.6	15
131	Global Identification of Androgen Response Elements. Methods in Molecular Biology, 2011, 776, 255-273.	0.4	14
132	Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci. PLoS ONE, 2015, 10, e0144531.	1.1	14
133	Cardioprotective effects of dietary rapamycin on adult female C57BLKS/Jâ€ <i>Lepr^{db}</i> mice. Annals of the New York Academy of Sciences, 2018, 1418, 106-117.	1.8	14
134	The effect of sample size on polygenic hazard models for prostate cancer. European Journal of Human Genetics, 2020, 28, 1467-1475.	1.4	14
135	Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases, 2022, 25, 755-761.	2.0	14
136	AURKA overexpression accompanies dysregulation of DNA-damage response genes in invasive urothelial cell carcinoma. Cell Cycle, 2008, 7, 3525-3533.	1.3	13
137	Human blood-based exposure levels of persistent organic pollutant (POP) mixtures antagonise androgen receptor transactivation and translocation. Environment International, 2019, 132, 105083.	4.8	13
138	Identification and Validation of Leucine-rich α-2-glycoprotein 1 as a Noninvasive Biomarker for Improved Precision in Prostate Cancer Risk Stratification. European Urology Open Science, 2020, 21, 51-60.	0.2	13
139	Inhibition of CDK9 activity compromises global splicing in prostate cancer cells. RNA Biology, 2021, 18, 722-729.	1.5	13
140	Nuclear translocation and functions of growth factor receptors. Seminars in Cell and Developmental Biology, 2012, 23, 165-171.	2.3	12
141	Chromatin Immunoprecipitation (ChIP) Methodology and Readouts. Methods in Molecular Biology, 2009, 505, 123-137.	0.4	12
142	Genetic factors influencing prostate cancer risk in Norwegian men. Prostate, 2018, 78, 186-192.	1.2	11
143	Methodology for the at-home collection of urine samples for prostate cancer detection. BioTechniques, 2020, 68, 65-71.	0.8	11
144	Common genetic and clinical risk factors: association with fatal prostate cancer in the Cohort of Swedish Men. Prostate Cancer and Prostatic Diseases, 2021, 24, 845-851.	2.0	11

#	Article	IF	CITATIONS
145	Putting chromatin immunoprecipitation into context. Journal of Cellular Biochemistry, 2009, 107, 19-29.	1.2	10
146	First trimester detection of trisomy 16 using combined biochemical and ultrasound screening. Prenatal Diagnosis, 2014, 34, 291-295.	1.1	10
147	First trimester maternal serum alpha-fetoprotein is not raised in pregnancies with open spina bifida. Prenatal Diagnosis, 2014, 34, 168-171.	1.1	10
148	Association of maternal serum PAPPâ€A levels, nuchal translucency and crown–rump length in first trimester with adverse pregnancy outcomes: retrospective cohort study. Prenatal Diagnosis, 2017, 37, 705-711.	1.1	9
149	Modulating the unfolded protein response with ONC201 to impact on radiation response in prostate cancer cells. Scientific Reports, 2021, 11, 4252.	1.6	9
150	Performance of African-ancestry-specific polygenic hazard score varies according to local ancestry in 8q24. Prostate Cancer and Prostatic Diseases, 2022, 25, 229-237.	2.0	9
151	CaMKK2 facilitates Golgi-associated vesicle trafficking to sustain cancer cell proliferation. Cell Death and Disease, 2021, 12, 1040.	2.7	9
152	A PHASE 2, 8-WEEK, MULTI-CENTER, RANDOMIZED DOUBLE- BLIND, PLACEBO CONTROLLED, PARALLEL GROUP STUDY EVALUATING THE EFFICACY, TOLERABILITY AND SAFETY OF [S,S] - REBOXETINE (PNU-165442G) FOR STRESS URINARY INCONTINENCE IN WOMEN. Journal of Urology, 2008, 179, 569-570.	0.2	8
153	The impact of transcription on metabolism in prostate and breast cancers. Endocrine-Related Cancer, 2018, 25, R435-R452.	1.6	8
154	Clinical and functional characterization of CXCR1/CXCR2 biology in the relapse and radiotherapy resistance of primary PTEN-deficient prostate carcinoma. NAR Cancer, 2020, 2, zcaa012.	1.6	8
155	Tumour irradiation combined with vascular-targeted photodynamic therapy enhances antitumour effects in pre-clinical prostate cancer. British Journal of Cancer, 2021, 125, 534-546.	2.9	8
156	The Interplay Between Prostate Cancer Genomics, Metabolism, and the Epigenome: Perspectives and Future Prospects. Frontiers in Oncology, 2021, 11, 704353.	1.3	8
157	Clathrin Is Spindle-Associated but Not Essential for Mitosis. PLoS ONE, 2008, 3, e3115.	1.1	8
158	Investigating Radiotherapy Response in a Novel Syngeneic Model of Prostate Cancer. Cancers, 2020, 12, 2804.	1.7	8
159	EVALUATION OF THE SENSITIVITY OF URETHRAL PRESSURE REFLECTOMETRY (UPR) AND URETHRAL PRESSURE PROFILOMETRY (UPP) TO DETECT PHARMACOLOGICAL AUGMENTATION OF URETHRAL PRESSURE, USING [S,S]-REBOXETINE. Journal of Urology, 2008, 179, 521-522.	0.2	7
160	Terminal and progenitor lineage-survival oncogenes as cancer markers. Trends in Molecular Medicine, 2008, 14, 486-494.	3.5	6
161	Endosomal Signaling and Oncogenesis. Methods in Enzymology, 2014, 535, 179-200.	0.4	6
162	Detailed Molecular and Immune Marker Profiling of Archival Prostate Cancer Samples Reveals an Inverse Association between TMPRSS2:ERG Fusion Status and Immune Cell Infiltration. Journal of Molecular Diagnostics, 2020, 22, 652-669.	1.2	6

#	Article	IF	CITATIONS
163	Transcript analysis of commercial prostate cancer risk stratification panels in hardâ€toâ€predict grade group 2–4 prostate cancers. Prostate, 2021, 81, 368-376.	1.2	6
164	IGF-1R nuclear import and recruitment to chromatin involves both alpha and beta subunits. Discover Oncology, 2021, 12, 13.	0.8	6
165	The impact of HIV infection and antiretroviral therapy on the predicted risk of Down syndrome. Prenatal Diagnosis, 2014, 34, 121-127.	1.1	5
166	HOXB13, RFX6 and prostate cancer risk. Nature Genetics, 2014, 46, 94-95.	9.4	5
167	Human-Based Exposure Levels of Perfluoroalkyl Acids May Induce Harmful Effects to Health by Disrupting Major Components of Androgen Receptor Signalling In Vitro. Exposure and Health, 2020, 12, 527-538.	2.8	5
168	Sjögren syndrome/scleroderma autoantigen 1 is a direct Tankyrase binding partner in cancer cells. Communications Biology, 2020, 3, 123.	2.0	5
169	The role of the androgen receptor as a driver and mitigator of cellular stress. Journal of Molecular Endocrinology, 2020, 65, R19-R33.	1.1	5
170	Mapping Protein–DNA Interactions Using ChIP-exo and Illumina-Based Sequencing. Methods in Molecular Biology, 2016, 1443, 119-137.	0.4	4
171	Using the fluorescent properties of STO-609 as a tool to assist structure-function analyses of recombinant CaMKK2. Biochemical and Biophysical Research Communications, 2016, 476, 102-107.	1.0	4
172	First Report of Prostate-specific Membrane Antigen–targeted Immunotherapy in Prostate Cancer: The Future is Bright. European Urology, 2018, 73, 653-655.	0.9	4
173	Prenatal screening for Down syndrome in twin pregnancies: Estimates of screening performance based on 61 affected and 7302 unaffected twin pregnancies. Prenatal Diagnosis, 2018, 38, 1079-1085.	1.1	4
174	Studying N-Linked Glycosylation of Receptor Tyrosine Kinases. Methods in Molecular Biology, 2015, 1233, 103-109.	0.4	4
175	Taking Risks with Translational Research. Science Translational Medicine, 2010, 2, 24cm10.	5.8	3
176	Data for the co-expression and purification of human recombinant CaMKK2 in complex with calmodulin in Escherichia coli. Data in Brief, 2016, 8, 733-740.	0.5	3
177	Attenuating Adaptive VEGF-A and IL8 Signaling Restores Durable Tumor Control in AR Antagonist–Treated Prostate Cancers. Molecular Cancer Research, 2022, 20, 841-853.	1.5	3
178	In Vitro Techniques. , 2006, , 201-378.		2
179	Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO Journal, 2012, 31, 1617-1617.	3.5	2
180	Molecular Subtyping of Prostate Cancer: A Partnership Model. European Urology, 2015, 68, 568-569.	0.9	2

IAN G MILLS

#	Article	IF	CITATIONS
181	Maintaining a Healthy Balance: Targeting TERT to Stem Benign Prostatic Hyperplasia. European Urology, 2016, 69, 555-556.	0.9	2
182	A genetic risk score to personalize prostate cancer screening, applied to population data Journal of Clinical Oncology, 2019, 37, 181-181.	0.8	2
183	VPRBP Functions Downstream of the Androgen Receptor and OGT to Restrict p53 Activation in Prostate Cancer. Molecular Cancer Research, 2022, 20, 1047-1060.	1.5	2
184	Principles for the post-GWAS functional characterisation of risk loci. Nature Precedings, 2010, , .	0.1	1
185	1508 TANEZUMAB REDUCES PAIN AND URGENCY IN INTERSTITIAL CYSTITIS: RESULTS OF A PHASE 2 TRIAL. Journal of Urology, 2010, 183, .	0.2	1
186	DDIS-16. ONC201 IN COMBINATION WITH RADIATION EXHIBITS SYNERGISTIC EFFICACY IN HIGH GRADE GLIOMAS AND OTHER ADVANCED CANCERS. Neuro-Oncology, 2018, 20, vi72-vi72.	0.6	1
187	Abstract 2362: Long non-coding RNA NORAD interaction with miR-346 impacts DNA damage response and anti-tumor immunity in prostate cancer. , 2021, , .		1
188	The Effect of AR Overexpression on Androgen Signaling in Prostate Cancer. , 2013, , 187-200.		1
189	Abstract 1131: O-GlcNAc transferase inhibition in breast cancer cells. , 2017, , .		1
190	Abstract 3506: African-specific improvement of a polygenic hazard score to predict age of onset of prostate cancer. , 2020, , .		1
191	O-GlcNAc transferase maintains metabolic homeostasis in response to CDK9 inhibition. Glycobiology, 0, , .	1.3	1
192	Principles for the post-GWAS functional characterisation of risk loci. Nature Precedings, 2011, , .	0.1	0
193	Bridging the gaps: From risk loci via non-coding RNAs to gene networks and prostate cancer phenotypes. Cell Cycle, 2011, 10, 4204-4204.	1.3	0
194	821 A RANDOMIZED, DOUBLE-BLIND, PLACEBO-CONTROLLED PHASE IIA TRIAL OF A CA 2+ CHANNEL α2Δ LIGAN PD-0299685, FOR THE TREATMENT OF INTERSTITIAL CYSTITIS/BLADDER PAIN SYNDROME. Journal of Urology, 2012, 187, .	ND, 0.2	0
195	Role of Hes6 in castration-resistant prostate cancer. Lancet, The, 2014, 383, S67.	6.3	0
196	Putting Prostate Cancer Metabolism into the Right Context. European Urology Oncology, 2019, 2, 37-38.	2.6	0
197	Common genetic and clinical risk factors: Association with fatal prostate cancer in the Cohort of Swedish Men Journal of Clinical Oncology, 2021, 39, 65-65.	0.8	0
198	Abstract 1714: Transcriptional networks downstream of the AR identify clinically relevant prostate cancer targets. , 2010, , .		0

IAN G MILLS

#	Article	IF	CITATIONS
199	Abstract B52: Huntingtin interacting protein 1 (HIP1) mediates prostate carcinogenesis and progression through effects on signal transducers and activators of transcription (STATs). , 2011, , .		0
200	Abstract SY32-04: The translation initiation factor elF2α regulates cytoprotective autophagy in Myc-dependent lymphoma , 2013, , .		0
201	Abstract B133: Regulation of the androgen receptor function by a metabolic kinase in prostate cancer , 2013, , .		0
202	Abstract 3737: Inhibition of O-GlcNAc transferase in tamoxifen resistant breast cancer cells. , 2016, , .		0
203	Abstract 5195: Modulating the UPR using the impridone ONC201 to change the impact of radiation on prostate cancer cells. , 2017, , .		0
204	Abstract 839: Treatment and signaling contexts for the application of the imipridone ONC201 to prostate cancer cells. , 2018, , .		0
205	Abstract 1555: A gene signature associated with PTEN activation defines good outcomes in intermediate-risk prostate cancer cases. , 2018, , .		0
206	Abstract B035: Radio-resistance of PTEN-deficient prostate tumors is enhanced by treatment-induced chemokine signaling and is associated with biochemical recurrence and development of metastasis. , 2018, , .		0
207	Abstract 249: Combination of ONC201 with radiation exhibits synergistic efficacy in high grade gliomas and other advanced cancers. , 2019, , .		0
208	Abstract 2928: New insight into signaling contexts for the administration of the imipridone ONC201 to prostate cancer cells. , 2019, , .		0
209	Abstract LB-098: ChIP-seq studies unravel novel AR and OGT co-regulated genes in prostate cancer cells. , 2019, , .		0
210	Predicting long-term results with circulating tumor cells in patients with de novo androgen sensitive prostate cancer treated with hTERT peptides vaccine Journal of Clinical Oncology, 2020, 38, 98-98.	0.8	0
211	MP67-19 DUCTAL ADENOCARCINOMA OF THE PROSTATE: A SYSTEMATIC REVIEW AND META-ANALYSIS OF INCIDENCE, PRESENTATION AND MANAGEMENT. Journal of Urology, 2020, 203, .	0.2	0
212	Autocrine Activation of MAPK-Signaling Mediates Intrinsic Tolerance to Androgen Deprivation in LY6D Prostate Cancer Cells. SSRN Electronic Journal, 0, , .	0.4	0
213	A novel MiR-346-Directed DNA damage mechanism is regulated by its interaction with long non-coding RNA, NORAD, in prostate cancer. Endocrine Abstracts, 0, , .	0.0	0
214	Abstract LB-098: ChIP-seq studies unravel novel AR and OGT co-regulated genes in prostate cancer cells. , 2019, , .		0
215	Abstract 249: Combination of ONC201 with radiation exhibits synergistic efficacy in high grade gliomas and other advanced cancers. , 2019, , .		0
216	Abstract 2928: New insight into signaling contexts for the administration of the imipridone ONC201 to prostate cancer cells. , 2019, , .		0