Lyudmila A Pestryakova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/166114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sedimentary <scp>DNA</scp> identifies modern and past macrophyte diversity and its environmental drivers in high″atitude and highâ€elevation lakes in Siberia and China. Limnology and Oceanography, 2022, 67, 1126-1141.	1.6	13
2	Thermohydrological Impact of Forest Disturbances on Ecosystemâ€Protected Permafrost. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	1.3	3
3	Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA. Communications Biology, 2022, 5, .	2.0	10
4	Climatic and environmental changes in the Yana Highlands of northâ€eastern Siberia over the lastc. 57 000Âyears, derived from a sediment core from Lake Emanda. Boreas, 2021, 50, 114-133.	1.2	11
5	Hybridization capture of larch (<i>Larix</i> Mill.) chloroplast genomes from sedimentary ancient DNA reveals past changes of Siberian forest. Molecular Ecology Resources, 2021, 21, 801-815.	2.2	26
6	Variability of the surface energy balance in permafrost-underlain boreal forest. Biogeosciences, 2021, 18, 343-365.	1.3	19
7	Effects of climate change and industrialization on Lake Bolshoe Toko, eastern Siberia. Journal of Paleolimnology, 2021, 65, 335-352.	0.8	16
8	Late Pleistocene to Holocene vegetation and climate changes in northwestern Chukotka (Far East) Tj ETQq0 0 0	rgBT /Ovei	rlock 10 Tf 5

9	Vegetation Changes in Southeastern Siberia During the Late Pleistocene and the Holocene. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	15
10	Climate and environmental changes of the Lateglacial transition and Holocene in northeastern Siberia: Evidence from diatom oxygen isotopes and assemblage composition at Lake Emanda. Quaternary Science Reviews, 2021, 259, 106905.	1.4	9
11	Sediment and carbon accumulation in a glacial lake in Chukotka (Arctic Siberia) during the Late Pleistocene and Holocene: combining hydroacoustic profiling and down-core analyses. Biogeosciences, 2021, 18, 4791-4816.	1.3	6
12	Sensitivity of ecosystem-protected permafrost under changing boreal forest structures. Environmental Research Letters, 2021, 16, 084045.	2.2	11
13	Late Quaternary Climate Reconstruction and Lead-Lag Relationships of Biotic and Sediment-Geochemical Indicators at Lake Bolshoe Toko, Siberia. Frontiers in Earth Science, 2021, 9, .	0.8	8
14	14,000-year Carbon Accumulation Dynamics in a Siberian Lake Reveal Catchment and Lake Productivity Changes. Frontiers in Earth Science, 2021, 9, .	0.8	3
15	Plant Sedimentary Ancient DNA From Far East Russia Covering the Last 28,000 Years Reveals Different Assembly Rules in Cold and Warm Climates. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	10
16	Holocene Vegetation and Plant Diversity Changes in the North-Eastern Siberian Treeline Region From Pollen and Sedimentary Ancient DNA. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	29
17	Longâ€lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia. Ecology and Evolution, 2020, 10, 10017-10030.	0.8	7
18	Geochemical and sedimentological responses of arctic glacial Lake Ilirney, chukotka (far east Russia) to palaeoenvironmental change since â^1⁄451.8 ka BP. Quaternary Science Reviews, 2020, 247, 106607.	1.4	27

Lyudmila A Pestryakova

#	Article	IF	CITATIONS
19	Phylogenetic diversity and environment form assembly rules for Arctic diatom genera—A study on recent and ancient sedimentary DNA. Journal of Biogeography, 2020, 47, 1166-1179.	1.4	15
20	Lake-depth related pattern of genetic and morphological diatom diversity in boreal Lake Bolshoe Toko, Eastern Siberia. PLoS ONE, 2020, 15, e0230284.	1.1	20
21	Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017. Environmental Research Letters, 2020, 15, 085006.	2.2	28
22	Plant diversity in sedimentary DNA obtained from high-latitude (Siberia) and high-elevation lakes (China). Biodiversity Data Journal, 2020, 8, e57089.	0.4	12
23	Chloroplast and mitochondrial genetic variation of larches at the Siberian tundra-taiga ecotone revealed by de novo assembly. PLoS ONE, 2019, 14, e0216966.	1.1	13
24	Advances in the Derivation of Northeast Siberian Forest Metrics Using High-Resolution UAV-Based Photogrammetric Point Clouds. Remote Sensing, 2019, 11, 1447.	1.8	19
25	Spatial distribution of environmental indicators in surface sediments of Lake Bolshoe Toko, Yakutia, Russia. Biogeosciences, 2019, 16, 4023-4049.	1.3	28
26	Dispersal distances and migration rates at the arctic treeline in Siberia – a genetic and simulation-based study. Biogeosciences, 2019, 16, 1211-1224.	1.3	21
27	The sensitivity of diatom taxa from Yakutian lakes (north-eastern Siberia) to electrical conductivity and other environmental variables. Polar Research, 2018, 37, 1485625.	1.6	25
28	Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling. Scientific Reports, 2018, 8, 17436.	1.6	24
29	Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands. Arctic, Antarctic, and Alpine Research, 2018, 50, .	0.4	7
30	Dissimilar responses of larch stands in northern Siberia to increasing temperatures—a field and simulation based study. Ecology, 2017, 98, 2343-2355.	1.5	34
31	A comparison of sedimentary <scp>DNA</scp> and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Molecular Ecology Resources, 2017, 17, e46-e62.	2.2	64
32	Sedimentary DNA versus morphology in the analysis of diatom-environment relationships. Journal of Paleolimnology, 2017, 57, 51-66.	0.8	27
33	C†â^â€N ratio, stable isotope (<i>l̂</i> ^{13<i>n</i>-alkane patterns of brown mosses along hydrological gradients of}	mp;gt;C,) 1.3	Tj ETQq1 1 (11
34	Freshwater ostracods (Crustacea) and environmental variability of polygon ponds in the tundra of the Indigirka Lowland, north-east Siberia. Polar Research, 2016, 35, 25225.	1.6	12
35	Vegetation patterns along microâ€relief and vegetation type transects in polygonal landscapes of the Siberian Arctic. Journal of Vegetation Science, 2016, 27, 377-386.	1.1	18
36	Vegetation, climate and lake changes over the last 7000 years at the boreal treeline in north-central Siberia. Quaternary Science Reviews, 2016, 147, 422-434.	1.4	45

#	Article	IF	CITATIONS
37	Genetic data from algae sedimentary DNA reflect the influence of environment over geography. Scientific Reports, 2015, 5, 12924.	1.6	30
38	Relative pollen productivity estimates for common taxa of the northern Siberian Arctic. Review of Palaeobotany and Palynology, 2015, 221, 71-82.	0.8	43
39	A combined paleolimnological/genetic analysis of diatoms reveals divergent evolutionary lineages of Staurosira and Staurosirella (Bacillariophyta) in Siberian lake sediments along a latitudinal transect. Journal of Paleolimnology, 2014, 52, 77-93.	0.8	18
40	A pollen-climate transfer function from the tundra and taiga vegetation in Arctic Siberia and its applicability to a Holocene record. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 386, 702-713.	1.0	61
41	Siberian larch forests and the ion content of thaw lakes form a geochemically functional entity. Nature Communications, 2013, 4, 2408.	5.8	36

Present-day variability and Holocene dynamics of permafrost-affected lakes in central Yakutia (Eastern) Tj ETQq0 0 0 rgBT /Overlock 10