Ayla Santâ€Mha da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1661075/publications.pdf

Version: 2024-02-01

33 1,405
papers citations

34

all docs

1,405 18 29 g-index

34 34 1807 docs citations times ranked citing authors

476904

#	Article	IF	CITATIONS
1	Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 2010, 101, 7402-7409.	4.8	322
2	Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review. Biotechnology for Biofuels, 2020, 13, 58.	6.2	140
3	Amino acids interference on the quantification of reducing sugars by the 3,5-dinitrosalicylic acid assay mislead carbohydrase activity measurements. Carbohydrate Research, 2012, 363, 33-37.	1.1	107
4	Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim] [Ac]). Bioresource Technology, 2011, 102, 10505-10509.	4.8	105
5	Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetic perspectives. Catalysis Science and Technology, 2021, 11, 5696-5711.	2.1	72
6	Continuous pretreatment of sugarcane bagasse at high loading in an ionic liquid using a twin-screw extruder. Green Chemistry, 2013, 15, 1991.	4.6	71
7	Combined pollution of copper nanoparticles and atrazine in soil: Effects on dissipation of the pesticide and on microbiological community profiles. Journal of Hazardous Materials, 2019, 361, 228-236.	6.5	55
8	Combining biomass wet disk milling and endoglucanase \hat{l}^2 -glucosidase hydrolysis for the production of cellulose nanocrystals. Carbohydrate Polymers, 2015, 128, 75-81.	5.1	53
9	Acetic acid increases the phage-encoded enterotoxin A expression in Staphylococcus aureus. BMC Microbiology, 2010, 10, 147.	1.3	45
10	Sequential white-rot and brown-rot fungal pretreatment of wheat straw as a promising alternative for complementary mild treatments. Waste Management, 2018, 79, 240-250.	3.7	43
11	High-solids content enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse using a laboratory-made enzyme blend and commercial preparations. Process Biochemistry, 2016, 51, 1561-1567.	1.8	42
12	Continuous pretreatment of sugarcane biomass using a twin-screw extruder. Industrial Crops and Products, 2017, 97, 509-517.	2.5	42
13	Chemical characterization, antioxidant and antimicrobial activities of açaÃ-seed (Euterpe oleracea) Tj ETQq1 1 (109830.	0.784314 2.5	rgBT /Overloc 37
14	High concentration and yield production of mannose from açaÃ-(Euterpe oleracea Mart.) seeds via mannanase-catalyzed hydrolysis. Scientific Reports, 2019, 9, 10939.	1.6	33
15	Efficient production of lignocellulolytic enzymes xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by the mutant strain Aspergillus awamori 2B.361 U2/1. Brazilian Journal of Microbiology, 2013, 44, 569-576.	0.8	31
16	Biohydrogen production using xylose or xylooligosaccharides derived from sugarcane bagasse obtained by hydrothermal and acid pretreatments. Renewable Energy, 2020, 146, 2408-2415.	4.3	31
17	A validated Folin-Ciocalteu method for total phenolics quantification of condensed tannin-rich açaÃ- (Euterpe oleracea Mart.) seeds extract. Journal of Food Science and Technology, 2021, 58, 4693-4702.	1.4	31
18	Modification of microcrystalline cellulose structural properties by ball-milling and ionic liquid treatments and their correlation to enzymatic hydrolysis rate and yield. Cellulose, 2019, 26, 7323-7335.	2.4	22

#	Article	IF	CITATIONS
19	Biomass pretreatment: a critical choice for biomass utilization via biotechnological routes. BMC Proceedings, 2014, 8, .	1.8	19
20	Use of cellobiohydrolase-free cellulase blends for the hydrolysis of microcrystalline cellulose and sugarcane bagasse pretreated by either ball milling or ionic liquid [Emim][Ac]. Bioresource Technology, 2013, 149, 551-555.	4.8	18
21	Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation. Bioresource Technology, 2010, 101, 7402-9.	4.8	16
22	A novel Trichoderma harzianum strain from the Amazon Forest with high cellulolytic capacity. Biocatalysis and Agricultural Biotechnology, 2018, 14, 183-188.	1.5	14
23	Simplified Method to Optimize Enzymatic Esters Syntheses in Solvent-Free Systems: Validation Using Literature and Experimental Data. Catalysts, 2021, 11, 1357.	1.6	10
24	Production of cellulases and \hat{l}^2 -glucosidases by Trichoderma reesei Rut C30 using steam-pretreated sugarcane bagasse: an integrated approach for onsite enzyme production. Brazilian Journal of Chemical Engineering, 2021, 38, 435-442.	0.7	8
25	Dry extrusion pretreatment of cassava starch aided by sugarcane bagasse for improved starch saccharification. Carbohydrate Polymers, 2022, 285, 119256.	5.1	8
26	Synthesis of disaccharides using \hat{l}^2 -glucosidases from Aspergillus niger, A. awamori and Prunus dulcis. Biotechnology Letters, 2017, 39, 1717-1723.	1.1	6
27	A practical approach to obtain high yield lipase-mediated synthesis of octyl caprylate with Novozym 435. Biocatalysis and Biotransformation, 0 , , 1 - 11 .	1.1	6
28	Comparative performance and reusability studies of lipases on syntheses of octyl esters with an economic approach. Bioprocess and Biosystems Engineering, 2022, 45, 131-145.	1.7	5
29	Productive Chain of Biofuels and Industrial Biocatalysis. , 2017, , 545-581.		4
30	AçaÃ-waste valorization via mannose and polyphenols production: techno-economic and environmental assessment. Biomass Conversion and Biorefinery, 2024, 14, 3739-3752.	2.9	4
31	A Prior Biological Delignification Treatment as an Aid for the Hydrothermal Pretreatment of Sugarcane Straw. Waste and Biomass Valorization, 2022, 13, 4881-4895.	1.8	3
32	Aspergillus awamori endoglucanase-rich supernatant enhances lignocellulosic biomass liquefaction in high-solids enzymatic hydrolysis. Biochemical Engineering Journal, 2022, 183, 108448.	1.8	2
33	Chlorine-Free Biomass Processing: Enzymatic Alternatives for Bleaching and Hydrolysis of Lignocellulosic Materials., 2016,, 241-268.		O