
Jessica J Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1661036/publications.pdf Version: 2024-02-01

IFSSICA I MALSH

#	Article	IF	CITATIONS
1	Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature, 2013, 493, 532-536.	27.8	961
2	Gating of social reward by oxytocin in the ventral tegmental area. Science, 2017, 357, 1406-1411.	12.6	414
3	Enhancing Depression Mechanisms in Midbrain Dopamine Neurons Achieves Homeostatic Resilience. Science, 2014, 344, 313-319.	12.6	409
4	Mesolimbic Dopamine Neurons in the Brain Reward Circuit Mediate Susceptibility to Social Defeat and Antidepressant Action. Journal of Neuroscience, 2010, 30, 16453-16458.	3.6	334
5	Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nature Neuroscience, 2014, 17, 1720-1727.	14.8	193
6	Basal forebrain projections to the lateral habenula modulate aggression reward. Nature, 2016, 534, 688-692.	27.8	193
7	Role of Vascular Risk Factors and Vascular Dysfunction in Alzheimer's Disease. Mount Sinai Journal of Medicine, 2010, 77, 82-102.	1.9	181
8	Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nature Neuroscience, 2014, 17, 27-29.	14.8	178
9	5-HT release in nucleus accumbens rescues social deficits in mouse autism model. Nature, 2018, 560, 589-594.	27.8	169
10	Essential Role of Mesolimbic Brain-Derived Neurotrophic Factor in Chronic Social Stress–Induced Depressive Behaviors. Biological Psychiatry, 2016, 80, 469-478.	1.3	164
11	Amyloid precursor protein (APP) regulates synaptic structure and function. Molecular and Cellular Neurosciences, 2012, 51, 43-52.	2.2	140
12	KCNQ channel openers reverse depressive symptoms via an active resilience mechanism. Nature Communications, 2016, 7, 11671.	12.8	109
13	Excitatory transmission at thalamo-striatal synapses mediates susceptibility to social stress. Nature Neuroscience, 2015, 18, 962-964.	14.8	86
14	Midbrain circuit regulation of individual alcohol drinking behaviors in mice. Nature Communications, 2017, 8, 2220.	12.8	63
15	Distinct neural mechanisms for the prosocial and rewarding properties of MDMA. Science Translational Medicine, 2019, 11, .	12.4	56
16	Midbrain projection to the basolateral amygdala encodes anxiety-like but not depression-like behaviors. Nature Communications, 2022, 13, 1532.	12.8	56
17	Reinforcement-Related Regulation of AMPA Glutamate Receptor Subunits in the Ventral Tegmental Area Enhances Motivation for Cocaine. Journal of Neuroscience, 2011, 31, 7927-7937.	3.6	38
18	Input-specific modulation of murine nucleus accumbens differentially regulates hedonic feeding. Nature Communications, 2021, 12, 2135.	12.8	35

JESSICA J WALSH

#	Article	IF	CITATIONS
19	Loss of the neural-specific BAF subunit ACTL6B relieves repression of early response genes and causes recessive autism. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10055-10066.	7.1	34
20	Deletion of the amyloid precursor-like protein 2 (APLP2) does not affect hippocampal neuron morphology or function. Molecular and Cellular Neurosciences, 2012, 49, 448-455.	2.2	30
21	Selective filtering of excitatory inputs to nucleus accumbens by dopamine and serotonin. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
22	Neural circuits regulating prosocial behaviors. Neuropsychopharmacology, 2023, 48, 79-89.	5.4	23
23	Systemic enhancement of serotonin signaling reverses social deficits in multiple mouse models for ASD. Neuropsychopharmacology, 2021, 46, 2000-2010.	5.4	21
24	Dissecting neural mechanisms of prosocial behaviors. Current Opinion in Neurobiology, 2021, 68, 9-14.	4.2	15
25	Light and chemical control of neuronal circuits: possible applications in neurotherapy. Expert Review of Neurotherapeutics, 2014, 14, 1007-1017.	2.8	6