
Orian S Shirihai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1660804/publications.pdf Version: 2024-02-01

Ο ΠΑΝ S SHIDIHAI

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO Journal, 2008, 27, 433-446.	3.5	2,587
4	Pancreatic cancers require autophagy for tumor growth. Genes and Development, 2011, 25, 717-729.	2.7	1,224
5	Telomere dysfunction induces metabolic and mitochondrial compromise. Nature, 2011, 470, 359-365.	13.7	1,093
6	Mitochondrial Dynamics in the Regulation of Nutrient Utilization and Energy Expenditure. Cell Metabolism, 2013, 17, 491-506.	7.2	1,043
7	The Histone Deacetylase Sirt6 Regulates Glucose Homeostasis via Hif1α. Cell, 2010, 140, 280-293.	13.5	880
8	The Interplay Between Mitochondrial Dynamics and Mitophagy. Antioxidants and Redox Signaling, 2011, 14, 1939-1951.	2.5	632
9	Mitochondrial fusion, fission and autophagy as a quality control axis: The bioenergetic view. Biochimica Et Biophysica Acta - Bioenergetics, 2008, 1777, 1092-1097.	0.5	556
10	Altered Mitochondrial Dynamics Contributes to Endothelial Dysfunction in Diabetes Mellitus. Circulation, 2011, 124, 444-453.	1.6	437
11	Bactericidal Antibiotics Induce Mitochondrial Dysfunction and Oxidative Damage in Mammalian Cells. Science Translational Medicine, 2013, 5, 192ra85.	5.8	391
12	Mitochondria Bound to Lipid Droplets Have Unique Bioenergetics, Composition, and Dynamics that Support Lipid Droplet Expansion. Cell Metabolism, 2018, 27, 869-885.e6.	7.2	359
13	The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature, 2010, 468, 659-663.	13.7	346
14	Mitochondrial Networking Protects β-Cells From Nutrient-Induced Apoptosis. Diabetes, 2009, 58, 2303-2315.	0.3	339
15	Mitochondrial â€~kiss-and-run': interplay between mitochondrial motility and fusion–fission dynamics. EMBO Journal, 2009, 28, 3074-3089.	3.5	300
16	Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nature Medicine, 2008, 14, 144-153.	15.2	285
17	LKB1 loss links serine metabolism to DNA methylation and tumorigenesis. Nature, 2016, 539, 390-395.	13.7	248
18	How Mitochondrial Dynamism Orchestrates Mitophagy. Circulation Research, 2015, 116, 1835-1849.	2.0	247

#	Article	IF	CITATIONS
19	Mitochondrial morphology transitions and functions: implications for retrograde signaling?. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R393-R406.	0.9	242
20	Antitelomerase Therapy Provokes ALT and Mitochondrial Adaptive Mechanisms in Cancer. Cell, 2012, 148, 651-663.	13.5	240
21	Direct interorganellar transfer of iron from endosome to mitochondrion. Blood, 2007, 110, 125-132.	0.6	231
22	Initial B Cell Activation Induces Metabolic Reprogramming and Mitochondrial Remodeling. IScience, 2018, 5, 99-109.	1.9	205
23	Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO Journal, 2019, 38, e101056.	3.5	204
24	Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16263-16268.	3.3	194
25	Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure. EMBO Journal, 2014, 33, n/a-n/a.	3.5	185
26	Mitochondria Bound to Lipid Droplets: Where Mitochondrial Dynamics Regulate Lipid Storage and Utilization. Cell Metabolism, 2019, 29, 827-835.	7.2	179
27	Fatty Acids Suppress Autophagic Turnover in β-Cells. Journal of Biological Chemistry, 2011, 286, 42534-42544.	1.6	170
28	Murine Mesenchymal Stem Cell Commitment to Differentiation Is Regulated by Mitochondrial Dynamics. Stem Cells, 2016, 34, 743-755.	1.4	164
29	A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity. Nature Communications, 2015, 6, 7014.	5.8	157
30	SUMO-1 Protease-1 Regulates Gene Transcription through PML. Molecular Cell, 2002, 10, 843-855.	4.5	148
31	Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. Human Molecular Genetics, 2012, 21, 978-990.	1.4	144
32	In vivo imaging of mitochondrial membrane potential in non-small-cell lung cancer. Nature, 2019, 575, 380-384.	13.7	143
33	The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells. Molecular Biology of the Cell, 2011, 22, 2235-2245.	0.9	142
34	Mitochondrial DNA and TLR9 drive muscle inflammation upon Opa1 deficiency. EMBO Journal, 2018, 37, .	3.5	139
35	Frequency and Selectivity of Mitochondrial Fusion Are Key to Its Quality Maintenance Function. Biophysical Journal, 2009, 96, 3509-3518.	0.2	136
36	Pseudotemporal Ordering of Single Cells Reveals Metabolic Control of Postnatal β Cell Proliferation. Cell Metabolism, 2017, 25, 1160-1175.e11.	7.2	128

#	Article	IF	CITATIONS
37	β-Cell Uncoupling Protein 2 Regulates Reactive Oxygen Species Production, Which Influences Both Insulin and Glucagon Secretion. Diabetes, 2011, 60, 2710-2719.	0.3	115
38	Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP. American Journal of Physiology - Cell Physiology, 2006, 291, C176-C184.	2.1	112
39	A novel approach to measure mitochondrial respiration in frozen biological samples. EMBO Journal, 2020, 39, e104073.	3.5	110
40	Lysosomal dysfunction and impaired autophagy underlie the pathogenesis of amyloidogenic light chainâ€mediated cardiotoxicity. EMBO Molecular Medicine, 2014, 6, 1493-1507.	3.3	106
41	Integrated, Step-Wise, Mass-Isotopomeric Flux Analysis of the TCA Cycle. Cell Metabolism, 2015, 22, 936-947.	7.2	106
42	Cristae undergo continuous cycles of membrane remodelling in a <scp>MICOS</scp> â€dependent manner. EMBO Reports, 2020, 21, e49776.	2.0	106
43	β-Cell Mitochondria Exhibit Membrane Potential Heterogeneity That Can Be Altered by Stimulatory or Toxic Fuel Levels. Diabetes, 2007, 56, 2569-2578.	0.3	104
44	A Novel High-Throughput Assay for Islet Respiration Reveals Uncoupling of Rodent and Human Islets. PLoS ONE, 2012, 7, e33023.	1.1	103
45	A novel miniature cell retainer for correlative high-content analysis of individual untethered non-adherent cells. Lab on A Chip, 2006, 6, 995.	3.1	101
46	MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. Autophagy, 2013, 9, 1887-1896.	4.3	100
47	What can mitochondrial heterogeneity tell us about mitochondrial dynamics and autophagy?. International Journal of Biochemistry and Cell Biology, 2009, 41, 1914-1927.	1.2	99
48	Mitochondrial morphology regulates organellar Ca ²⁺ uptake and changes cellular Ca ²⁺ homeostasis. FASEB Journal, 2019, 33, 13176-13188.	0.2	90
49	Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis. EMBO Reports, 2017, 18, 1123-1138.	2.0	89
50	Cell culture models of fatty acid overload: Problems and solutions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 143-151.	1.2	87
51	Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Dietâ€Induced Metabolic Heart Disease. Journal of the American Heart Association, 2016, 5, .	1.6	85
52	Restoration of autophagy in endothelial cells from patients with diabetes mellitus improves nitric oxide signaling. Atherosclerosis, 2016, 247, 207-217.	0.4	84
53	Modulation of <scp>mTOR</scp> signaling as a strategy for the treatment of Pompe disease. EMBO Molecular Medicine, 2017, 9, 353-370.	3.3	83
54	The impact of exercise on mitochondrial dynamics and the role of Drp1 in exercise performance and training adaptations in skeletal muscle. Molecular Metabolism, 2019, 21, 51-67.	3.0	83

#	Article	IF	CITATIONS
55	Defective Mitochondrial Morphology and Bioenergetic Function in Mice Lacking the Transcription Factor Yin Yang 1 in Skeletal Muscle. Molecular and Cellular Biology, 2012, 32, 3333-3346.	1.1	77
56	Emergence of a Stage-Dependent Human Liver Disease Signature with Directed Differentiation of Alpha-1 Antitrypsin-Deficient iPS Cells. Stem Cell Reports, 2015, 4, 873-885.	2.3	77
57	Glucose-dependent increase in mitochondrial membrane potential, but not cytoplasmic calcium, correlates with insulin secretion in single islet cells. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E143-E148.	1.8	75
58	Biophysical properties of mitochondrial fusion events in pancreatic β-cells and cardiac cells unravel potential control mechanisms of its selectivity. American Journal of Physiology - Cell Physiology, 2010, 299, C477-C487.	2.1	75
59	Respiration in Adipocytes is Inhibited by Reactive Oxygen Species. Obesity, 2010, 18, 1493-1502.	1.5	72
60	Mitochondrial dynamics and morphology in beta-cells. Best Practice and Research in Clinical Endocrinology and Metabolism, 2012, 26, 725-738.	2.2	71
61	Organellar vs cellular control of mitochondrial dynamics. Seminars in Cell and Developmental Biology, 2010, 21, 575-581.	2.3	70
62	Mitochondrial ABC transporters function: The role of ABCB10 (ABC-me) as a novel player in cellular handling of reactive oxygen species. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1945-1957.	1.9	68
63	High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II. Journal of Molecular and Cellular Cardiology, 2015, 78, 165-173.	0.9	68
64	IRGM1 links mitochondrial quality control to autoimmunity. Nature Immunology, 2021, 22, 312-321.	7.0	67
65	BET Bromodomain Proteins Brd2, Brd3 and Brd4 Selectively Regulate Metabolic Pathways in the Pancreatic β-Cell. PLoS ONE, 2016, 11, e0151329.	1.1	65
66	Estrogen receptor α controls metabolism in white and brown adipocytes by regulating <i>Polg1</i> and mitochondrial remodeling. Science Translational Medicine, 2020, 12, .	5.8	64
67	Mitochondrial Transporter ATP Binding Cassette Mitochondrial Erythroid Is a Novel Gene Required for Cardiac Recovery After Ischemia/Reperfusion. Circulation, 2011, 124, 806-813.	1.6	61
68	Targeting, Import, and Dimerization of a Mammalian Mitochondrial ATP Binding Cassette (ABC) Transporter, ABCB10 (ABC-me). Journal of Biological Chemistry, 2004, 279, 42954-42963.	1.6	60
69	Lysosome acidification by photoactivated nanoparticles restores autophagy under lipotoxicity. Journal of Cell Biology, 2016, 214, 25-34.	2.3	59
70	Insulin Signaling Regulates Mitochondrial Function in Pancreatic Î ² -Cells. PLoS ONE, 2009, 4, e7983.	1.1	57
71	Reactive Oxygen Species Stimulate Insulin Secretion in Rat Pancreatic Islets: Studies Using Mono-Oleoyl-Glycerol. PLoS ONE, 2012, 7, e30200.	1.1	57
72	IAPP toxicity activates HIF11±/PFKFB3 signaling delaying 1²-cell loss at the expense of 1²-cell function. Nature Communications, 2019, 10, 2679.	5.8	55

#	Article	IF	CITATIONS
73	Testosterone Plus Low-Intensity Physical Training in Late Life Improves Functional Performance, Skeletal Muscle Mitochondrial Biogenesis, and Mitochondrial Quality Control in Male Mice. PLoS ONE, 2012, 7, e51180.	1.1	55
74	Optimal Dynamics for Quality Control in Spatially Distributed Mitochondrial Networks. PLoS Computational Biology, 2013, 9, e1003108.	1.5	54
75	Mutations in LRRK2 potentiate age-related impairment of autophagic flux. Molecular Neurodegeneration, 2015, 10, 26.	4.4	54
76	Mitochondrial oxidative function in NAFLD: Friend or foe?. Molecular Metabolism, 2021, 50, 101134.	3.0	53
77	Role of Mitofusin 2 in the Renal Stress Response. PLoS ONE, 2012, 7, e31074.	1.1	53
78	Mitochondrial remodeling in mice with cardiomyocyte-specific lipid overload. Journal of Molecular and Cellular Cardiology, 2015, 79, 275-283.	0.9	52
79	Optogenetic control of mitochondrial metabolism and Ca ²⁺ signaling by mitochondria-targeted opsins. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E5167-E5176.	3.3	52
80	Mitochondrial Uncoupling Protein 2 Inhibits Mast Cell Activation and Reduces Histamine Content. Journal of Immunology, 2009, 183, 6313-6319.	0.4	50
81	ATP-Binding Cassette B10 Regulates Early Steps of Heme Synthesis. Circulation Research, 2013, 113, 279-287.	2.0	50
82	Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Reports, 2021, 36, 109636.	2.9	48
83	The CB1 Antagonist Rimonabant Decreases Insulin Hypersecretion in Rat Pancreatic Islets. Obesity, 2009, 17, 1856-1860.	1.5	44
84	Autocrine effect of vascular endothelial growth factor-A is essential for mitochondrial function in brown adipocytes. Metabolism: Clinical and Experimental, 2016, 65, 26-35.	1.5	42
85	Ca2+, NAD(P)H and membrane potential changes in pancreatic β-cells by methyl succinate: comparison with glucose. Biochemical Journal, 2007, 403, 197-205.	1.7	40
86	Fgr kinase is required for proinflammatory macrophage activation during diet-induced obesity. Nature Metabolism, 2020, 2, 974-988.	5.1	40
87	Emerging roles of β-cell mitochondria in type-2-diabetes. Molecular Aspects of Medicine, 2020, 71, 100843.	2.7	39
88	Association of Genetic Variation in the Mitochondrial Genome With Blood Pressure and Metabolic Traits. Hypertension, 2012, 60, 949-956.	1.3	38
89	The biology of lipid droplet-bound mitochondria. Seminars in Cell and Developmental Biology, 2020, 108, 55-64.	2.3	38
90	Proteinuria causes dysfunctional autophagy in the proximal tubule. American Journal of Physiology - Renal Physiology, 2016, 311, F1271-F1279.	1.3	35

#	Article	IF	CITATIONS
91	Metabolic master regulators: sharing information among multiple systems. Trends in Endocrinology and Metabolism, 2012, 23, 594-601.	3.1	34
92	Mitochondria Distinguish Granule-Stored from de novo Synthesized Tumor Necrosis Factor Secretion in Human Mast Cells. International Archives of Allergy and Immunology, 2012, 159, 23-32.	0.9	33
93	ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 121-131.	2.6	33
94	Individual islet respirometry reveals functional diversity within the islet population of mice and human donors. Molecular Metabolism, 2018, 16, 150-159.	3.0	32
95	NCLX prevents cell death during adrenergic activation of the brown adipose tissue. Nature Communications, 2020, 11, 3347.	5.8	31
96	Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling. EMBO Reports, 2020, 21, e49634.	2.0	31
97	Chapter 16 Monitoring Mitochondrial Dynamics with Photoactivateable Green Fluorescent Protein. Methods in Enzymology, 2009, 457, 289-304.	0.4	30
98	DLST-dependence dictates metabolic heterogeneity in TCA-cycle usage among triple-negative breast cancer. Communications Biology, 2021, 4, 1289.	2.0	30
99	UCP2 Modulates Cell Proliferation through the MAPK/ERK Pathway during Erythropoiesis and Has No Effect on Heme Biosynthesis*. Journal of Biological Chemistry, 2008, 283, 30461-30470.	1.6	29
100	Nanoparticleâ \in mediated lysosomal reacidification restores mitochondrial turnover and function in \hat{I}^2 cells under lipotoxicity. FASEB Journal, 2019, 33, 4154-4165.	0.2	29
101	Quantification of cristae architecture reveals time-dependent characteristics of individual mitochondria. Life Science Alliance, 2020, 3, e201900620.	1.3	29
102	Cell cycle–related metabolism and mitochondrial dynamics in a replication-competent pancreatic beta-cell line. Cell Cycle, 2017, 16, 2086-2099.	1.3	27
103	Mitochondrial Proton Leak Regulated by Cyclophilin D Elevates Insulin Secretion in Islets at Nonstimulatory Glucose Levels. Diabetes, 2020, 69, 131-145.	0.3	26
104	Measuring Mitochondrial Respiration in Previously Frozen Biological Samples. Current Protocols in Cell Biology, 2020, 89, e116.	2.3	26
105	Diluted serum from calorieâ€restricted animals promotes mitochondrial βâ€cell adaptations and protect against glucolipotoxicity. FEBS Journal, 2016, 283, 822-833.	2.2	25
106	Nanoparticle tumor localization, disruption of autophagosomal trafficking, and prolonged drug delivery improve survival in peritoneal mesothelioma. Biomaterials, 2016, 102, 175-186.	5.7	25
107	A precision therapeutic strategy for hexokinase 1-null, hexokinase 2-positive cancers. Cancer & Metabolism, 2018, 6, 7.	2.4	25
108	Degradable Nanoparticles Restore Lysosomal pH and Autophagic Flux in Lipotoxic Pancreatic Beta Cells. Advanced Healthcare Materials, 2019, 8, e1801511.	3.9	23

#	Article	IF	CITATIONS
109	Ellagic Acid and Its Microbial Metabolite Urolithin A Alleviate Dietâ€Induced Insulin Resistance in Mice. Molecular Nutrition and Food Research, 2020, 64, e2000091.	1.5	23
110	K+ channel antisense oligodeoxynucleotides inhibit cytokine-induced expansion of human hemopoietic progenitors. Pflugers Archiv European Journal of Physiology, 1996, 431, 632-638.	1.3	21
111	Mitochondrial Networking in T Cell Memory. Cell, 2016, 166, 9-10.	13.5	21
112	The OXPHOS supercomplex assembly factor HIG2A responds to changes in energetic metabolism and cell cycle . Journal of Cellular Physiology, 2019, 234, 17405-17419.	2.0	18
113	A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake. Redox Biology, 2020, 37, 101676.	3.9	17
114	Recruitment and remodeling of peridroplet mitochondria in human adipose tissue. Redox Biology, 2021, 46, 102087.	3.9	17
115	Modulating lysosomal pH: a molecular and nanoscale materials design perspective. Journal of Life Sciences (Westlake Village, Calif), 2020, 2, 25-37.	1.8	17
116	Real-Time Detection of Reactive Oxygen Intermediates From Single Microglial Cells. Biological Bulletin, 2001, 201, 261-262.	0.7	16
117	Measurement of Mitochondrial Turnover and Life Cycle Using MitoTimer. Methods in Enzymology, 2014, 547, 21-38.	0.4	16
118	Erythroid Differentiation and Heme Biosynthesis Are Dependent on a Shift in the Balance of Mitochondrial Fusion and Fission Dynamics. Frontiers in Cell and Developmental Biology, 2020, 8, 592035.	1.8	16
119	Mitochondrial Heterogeneity in Metabolic Diseases. Biology, 2021, 10, 927.	1.3	14
120	Synergistic amplification of β-amyloid- and interferon-γ-induced microglial neurotoxic response by the senile plaque component chromogranin A. American Journal of Physiology - Cell Physiology, 2005, 288, C169-C175.	2.1	13
121	A Faster, High Resolution, mtPA-GFP-based Mitochondrial Fusion Assay Acquiring Kinetic Data of Multiple Cells in Parallel Using Confocal Microscopy. Journal of Visualized Experiments, 2012, , e3991.	0.2	13
122	ATP Binding and Hydrolysis Properties of ABCB10 and Their Regulation by Glutathione. PLoS ONE, 2015, 10, e0129772.	1.1	13
123	Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives. Life, 2021, 11, 949.	1.1	13
124	A Thermogenic-Like Brown Adipose Tissue Phenotype Is Dispensable for Enhanced Glucose Tolerance in Female Mice. Diabetes, 2019, 68, 1717-1729.	0.3	12
125	To Fis or not to Fuse? This is the question!. EMBO Journal, 2019, 38, .	3.5	12
126	COQ11 deletion mitigates respiratory deficiency caused by mutations in the gene encoding the coenzyme Q chaperone protein Coq10. Journal of Biological Chemistry, 2020, 295, 6023-6042.	1.6	11

#	Article	IF	CITATIONS
127	Isolation and functional analysis of peridroplet mitochondria from murine brown adipose tissue. STAR Protocols, 2021, 2, 100243.	0.5	11
128	MitoTimer-based high-content screen identifies two chemically-related benzothiophene derivatives that enhance basal mitophagy. Biochemical Journal, 2020, 477, 461-475.	1.7	11
129	Forces, Fluxes, and Fuels: Tracking mitochondrial metabolism by integrating measurements of membrane potential, respiration, and metabolites. American Journal of Physiology - Cell Physiology, 2021, 320, C80-C91.	2.1	10
130	The ApoA-I mimetic peptide 4F attenuates in vitro replication of SARS-CoV-2, associated apoptosis, oxidative stress and inflammation in epithelial cells. Virulence, 2021, 12, 2214-2227.	1.8	9
131	Method for live-cell super-resolution imaging of mitochondrial cristae and quantification of submitochondrial membrane potentials. Methods in Cell Biology, 2020, 155, 545-555.	0.5	7
132	PA-GFP: A Window into the Subcellular Adventures of the Individual Mitochondrion. Novartis Foundation Symposium, 2007, 287, 21-46.	1.2	5
133	Reply to: In vivo quantification of mitochondrial membrane potential. Nature, 2020, 583, E19-E20.	13.7	2
134	High-Throughput Image Analysis of Lipid-Droplet-Bound Mitochondria. Methods in Molecular Biology, 2021, 2276, 285-303.	0.4	2
135	Assessment of Brown Adipocyte Thermogenic Function by High-throughput Respirometry. Bio-protocol, 2015, 5, .	0.2	2
136	Mitochondrial fusion, fission and autophagy: Impact of diet on mitochondrial quality control. FASEB Journal, 2013, 27, .	0.2	1
137	Cellular Star Trek: A laser-based shuttle transfers mitochondria into cells. Molecular Metabolism, 2016, 5, 805-806.	3.0	0
138	Mitochondrial adaptation in obesity is a ClpPicated business. EMBO Reports, 2018, 19, .	2.0	0
139	Abstract 2818: In vivo imaging of mitochondrial bioenergetics in lung cancer. , 2021, , .		0
140	Abcb10 Physically Interacts with Mitoferrin1 to Enhance Its Stability for Heme Synthesis in the Erythroid Mitochondria. Blood, 2008, 112, 530-530.	0.6	0
141	Mitochondrial dynamics regulate brown adiopcyte energy expenditure. FASEB Journal, 2013, 27, 582.4.	0.2	0
142	A thermogenicâ€like brown adipose tissue phenotype is dispensable for enhanced glucose tolerance in female mice. FASEB Journal, 2019, 33, lb564.	0.2	0
143	Deletion of ABCB10 in beta-cells protects from high-fat diet induced insulin resistance. Molecular Metabolism, 2022, 55, 101403.	3.0	0