Mostafa Khater

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1660722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the phase separation in the ternary alloys: Numerical and computational simulations of the <scp>Atangana–Baleanu</scp> timeâ€fractional <scp>Cahn–Allen</scp> equation. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	1
2	On rigorous computational and numerical solutions for the voltages of the electrified transmission range with the day yet distance. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	2
3	Numerical simulations for the predator–prey model as a prototype of an excitable system. Numerical Methods for Partial Differential Equations, 2024, 40, .	2.0	3
4	Plenty of wave solutions to the ill-posed Boussinesq dynamic wave equation under shallow water beneath gravity. AIMS Mathematics, 2022, 7, 54-81.	0.7	21
5	Semi–analytical and numerical simulations of the modified Benjamin–Bona–Mahony model. Journal of Ocean Engineering and Science, 2022, 7, 264-271.	1.7	14
6	Diverse Soliton wave solutions of for the nonlinear potential Kadomtsev–Petviashvili and Calogero–Degasperis equations. Results in Physics, 2022, 33, 105116.	2.0	40
7	Abundant stable novel solutions of fractional-order epidemic model along with saturated treatment and disease transmission. Open Physics, 2022, 19, 843-852.	0.8	4
8	NUMERICAL INVESTIGATION OF THE NONLINEAR FRACTIONAL OSTROVSKY EQUATION. Fractals, 2022, 30, .	1.8	27
9	ON ANALYTICAL AND NUMERICAL SIMULATIONS FOR THE ULTRA-SHORT PULSES MATHEMATICAL MODEL IN OPTICAL FIBERS. Fractals, 2022, 30, .	1.8	5
10	Unstable novel and accurate soliton wave solutions of the nonlinear biological population model. Arab Journal of Basic and Applied Sciences, 2022, 29, 19-25.	1.0	20
11	Computational and numerical simulations of nonlinear fractional Ostrovsky equation. AEJ - Alexandria Engineering Journal, 2022, 61, 6887-6895.	3.4	14
12	Abundant accurate analytical and semi-analytical solutions of the positive Gardner–Kadomtsev–Petviashvili equation. Open Physics, 2022, 20, 30-39.	0.8	19
13	Computational Simulations; Abundant Optical Wave Solutions Atangana Conformable Fractional Nonlinear SchrĶdinger Equation. Advances in Mathematical Physics, 2022, 2022, 1-13.	0.4	6
14	Accurate demonstrating of the interactions of two long waves with different dispersion relations: Generalized Hirota–Satsuma couple KdV equation. AIP Advances, 2022, 12, .	0.6	24
15	Lax representation and bi-Hamiltonian structure of nonlinear Qiao model. Modern Physics Letters B, 2022, 36, .	1.0	41
16	Abundant wave structures of the fractional Benjamin-Ono equation through two computational techniques. Journal of Ocean Engineering and Science, 2022, , .	1.7	13
17	Computational wave solutions of some nonlinear evolution equations. Journal of Ocean Engineering and Science, 2022, , .	1.7	9
18	Abundant solitary and semi-analytical wave solutions of nonlinear shallow water wave regime model. Journal of Ocean Engineering and Science, 2022, , .	1.7	2

#	Article	IF	CITATIONS
19	Dynamical behaviour of Chiral nonlinear SchrĶdinger equation. Optical and Quantum Electronics, 2022, 54, 1.	1.5	55
20	Two-component plasma and electron trapping's influence on the potential of a solitary electrostatic wave with the dust-ion-acoustic speed. Journal of Ocean Engineering and Science, 2022, , .	1.7	13
21	Abundant stable and accurate solutions of the three-dimensional magnetized electron-positron plasma equations. Journal of Ocean Engineering and Science, 2022, , .	1.7	7
22	Optical wave solutions of perturbed time-fractional nonlinear Schrödinger equation. Journal of Ocean Engineering and Science, 2022, , .	1.7	10
23	Soliton wave solutions of ion-acoustic waves a cold plasma with negative ions. Journal of Low Frequency Noise Vibration and Active Control, 2022, 41, 852-895.	1.3	7
24	Computational simulation and nonlinear vibration motions of isolated waves localized in small part of space. Journal of Ocean Engineering and Science, 2022, , .	1.7	3
25	In (1Â+Â1)–dimension; inelastic interaction of long-surface gravity waves of small-amplitude unidirectional propagation. Journal of Ocean Engineering and Science, 2022, , .	1.7	3
26	Nonparaxial pulse propagation in a planar waveguide with Kerr–like and quintic nonlinearities; computational simulations. Chaos, Solitons and Fractals, 2022, 157, 111970.	2.5	49
27	Ultra-short pulses generation's precise influence on the light transmission in optical fibers. Results in Physics, 2022, 37, 105411.	2.0	29
28	OPTICAL SOLITON WAVE SOLUTIONS OF THE FRACTIONAL COMPLEX PARAXIAL WAVE DYNAMICAL MODEL ALONG WITH KERR MEDIA. Fractals, 2022, 30, .	1.8	12
29	Novel computational technique; the second positive member in a new completely integrable hierarchy. Journal of Ocean Engineering and Science, 2022, , .	1.7	0
30	Abundant novel nematicon soliton wave solutions in liquid crystals with Kerr law nonlinearity. Journal of Ocean Engineering and Science, 2022, , .	1.7	0
31	Dynamical behavior of the long waves on the surface of the water with a small amplitude in noneâ \in 'dimensional nonlinear lattices. Journal of Ocean Engineering and Science, 2022, , .	1.7	2
32	Localized and coherent waves' propagation in a nonlinear dispersive medium; Computational simulations. Journal of Ocean Engineering and Science, 2022, , .	1.7	0
33	Abundant accurate solitonic water and ionic liquid wave structures of the nanoparticle hybrid system. Computational and Applied Mathematics, 2022, 41, .	1.0	6
34	Computational simulations of the cubic-quintic nonlinear Helmholtz model. Journal of Ocean Engineering and Science, 2022, , .	1.7	4
35	Abundant stable wave structures for the nonlinear propagation of dislocations in crystals, phase differences across Josephson junctions. Journal of Ocean Engineering and Science, 2022, , .	1.7	0
36	Stable abundant computational solitary wave structures of the perturbed time-fractional NLS equation. Journal of Ocean Engineering and Science, 2022, , .	1.7	1

#	Article	IF	CITATIONS
37	Computational simulations; propagation behavior of the Riemann wave interacting with the long wave. Journal of Ocean Engineering and Science, 2022, , .	1.7	1
38	Analytical and semiâ€enalytical solutions for timeâ€fractional Cahn–Allen equation. Mathematical Methods in the Applied Sciences, 2021, 44, 2682-2691.	1.2	32
39	Numerical investigation for the fractional nonlinear spaceâ€time telegraph equation via the trigonometric Quintic Bâ€spline scheme. Mathematical Methods in the Applied Sciences, 2021, 44, 4598-4606.	1.2	62
40	Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete and Continuous Dynamical Systems - Series S, 2021, 14, 3459.	0.6	29
41	A New Numerical Approach for Solving 1D Fractional Diffusion-Wave Equation. Journal of Function Spaces, 2021, 2021, 1-7.	0.4	11
42	Strong Langmuir turbulence dynamics through the trigonometric quintic and exponential B-spline schemes. AIMS Mathematics, 2021, 6, 5896-5908.	0.7	29
43	Diverse novel analytical and semi-analytical wave solutions of the generalized (2+1)-dimensional shallow water waves model. AIP Advances, 2021, 11, .	0.6	55
44	Some optical soliton solutions to the perturbed nonlinear SchrĶdinger equation by modified Khater method. AIP Advances, 2021, 11, .	0.6	72
45	Diverse solitary and Jacobian solutions in a continually laminated fluid with respect to shear flows through the Ostrovsky equation. Modern Physics Letters B, 2021, 35, 2150220.	1.0	70
46	On semi analytical and numerical simulations for a mathematical biological model; the time-fractional nonlinear Kolmogorov–Petrovskii–Piskunov (KPP) equation. Chaos, Solitons and Fractals, 2021, 144, 110676.	2.5	82
47	Analytical and semi-analytical solutions for Phi-four equation through three recent schemes. Results in Physics, 2021, 22, 103954.	2.0	60
48	Diverse novel computational wave solutions of the time fractional Kolmogorov—Petrovskii - Piskunov and the (2 + 1)-dimensional Zoomeron equations. Physica Scripta, 2021, 96, 075207.	1.2	25
49	Diverse accurate computational solutions of the nonlinear Klein–Fock–Gordon equation. Results in Physics, 2021, 23, 104003.	2.0	45
50	On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques. European Physical Journal Plus, 2021, 136, 1.	1.2	60
51	Analytical versus numerical solutions of the nonlinear fractional time–space telegraph equation. Modern Physics Letters B, 2021, 35, 2150324.	1.0	78
52	Five semi analytical and numerical simulations for the fractional nonlinear space-time telegraph equation. Advances in Difference Equations, 2021, 2021, .	3.5	21
53	Bright–Dark Soliton Waves' Dynamics in Pseudo Spherical Surfaces through the Nonlinear Kaup–Kupershmidt Equation. Symmetry, 2021, 13, 963.	1.1	40
54	Accurate sets of solitary solutions for the quadratic–cubic fractional nonlinear Schrödinger equation. AIP Advances, 2021, 11, .	0.6	25

#	Article	IF	CITATIONS
55	Abundant novel wave solutions of nonlinear Klein–Gordon–Zakharov (KGZ) model. European Physical Journal Plus, 2021, 136, 1.	1.2	28
56	Computational and approximate solutions of complex nonlinear Fokas–Lenells equation arising in optical fiber. Results in Physics, 2021, 25, 104322.	2.0	37
57	Abundant Wave Accurate Analytical Solutions of the Fractional Nonlinear Hirota–Satsuma–Shallow Water Wave Equation. Fluids, 2021, 6, 235.	0.8	27
58	Multiple Novels and Accurate Traveling Wave and Numerical Solutions of the (2+1) Dimensional Fisher-Kolmogorov- Petrovskii-Piskunov Equation. Mathematics, 2021, 9, 1440.	1.1	25
59	Diverse Novel Stable Traveling Wave Solutions of the Advanced or Voltage Spectrum of Electrified Transmission Through Fractional Non-linear Model. Frontiers in Physics, 2021, 9, .	1.0	3
60	Abundant Traveling Wave and Numerical Solutions of Weakly Dispersive Long Waves Model. Symmetry, 2021, 13, 1085.	1.1	22
61	Sub-10-fs-pulse propagation between analytical and numerical investigation. Results in Physics, 2021, 25, 104133.	2.0	37
62	Explicit, periodic and dispersive soliton solutions to the conformable time-fractional Wu–Zhang system. Modern Physics Letters B, 2021, 35, 2150417.	1.0	13
63	Folded novel accurate analytical and semi-analytical solutions of a generalized Calogero–Bogoyavlenskii–Schiff equation. Communications in Theoretical Physics, 2021, 73, 095003.	1.1	48
64	Diverse bistable dark novel explicit wave solutions of cubic–quintic nonlinear Helmholtz model. Modern Physics Letters B, 2021, 35, 2150441.	1.0	43
65	Abundant wave solutions of the perturbed Gerdjikov–Ivanov equation in telecommunication industry. Modern Physics Letters B, 2021, 35, 2150456.	1.0	49
66	Bifurcation of new optical solitary wave solutions for the nonlinear long-short wave interaction system via two improved models of \$\$(rac{G'}{G})\$\$ expansion method. Optical and Quantum Electronics, 2021, 53, 1.	1.5	16
67	New traveling solutions of the fractional nonlinear KdV and ZKBBM equations with ?ℬℛ fractional operator. International Journal of Modern Physics B, 2021, 35, .	1.0	22
68	Numerical simulations of Zakharov's (ZK) non-dimensional equation arising in Langmuir and ion-acoustic waves. Modern Physics Letters B, 2021, 35, .	1.0	42
69	Plenty accurate soliton wave solutions of the prototype of an excitable system. AIP Advances, 2021, 11, .	0.6	9
70	Research of lump dynamics on the (3+1)-dimensional B-type Kadomtsev–Petviashvili–Boussinesq equation. Modern Physics Letters B, 2021, 35, .	1.0	10
71	Novel explicit breath wave and numerical solutions of an Atangana conformable fractional Lotka–Volterra model. AEJ - Alexandria Engineering Journal, 2021, 60, 4735-4743.	3.4	19
72	Optical soliton structure of the sub-10-fs-pulse propagation model. Journal of Optics (India), 2021, 50, 109-119.	0.8	23

#	Article	IF	CITATIONS
73	Computational schemes between the exact, analytical and numerical solution in present of time—fractional ecological model. Physica Scripta, 2021, 96, 035207.	1.2	4
74	Superabundant novel solutions of the long waves mathematical modeling in shallow water with power-law nonlinearity in ocean beaches via three recent analytical schemes. European Physical Journal Plus, 2021, 136, 1.	1.2	12
75	Novel analytical simulations of the complex nonlinear Davey–Stewartson equations in the gravity-capillarity surface wave packets. Journal of Ocean Engineering and Science, 2021, , .	1.7	10
76	Analytical simulations of the Fokas system; extension (2 + 1)-dimensional nonlinear Schrödinger equation. International Journal of Modern Physics B, 2021, 35, .	1.0	27
77	New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Optical and Quantum Electronics, 2021, 53, 1.	1.5	50
78	On some novel bright, dark and optical solitons to the cubic-quintic nonlinear non-paraxial pulse propagation model. Optical and Quantum Electronics, 2021, 53, 1.	1.5	6
79	Diverse novel solutions for the ionic current using the microtubule equation based on two recent computational schemes. Journal of Computational Electronics, 2021, 20, 2604-2613.	1.3	6
80	Propagation of new dynamics of longitudinal bud equation among a magneto-electro-elastic round rod. Modern Physics Letters B, 2021, 35, .	1.0	64
81	New types of exact solutions of high-frequency waves model in the relaxation medium. Thermal Science, 2021, 25, 233-238.	0.5	1
82	Novel solitary wave solutions in parabolic law medium with weak non-local non-linearity. Thermal Science, 2021, 25, 239-246.	0.5	0
83	Analytical and semi analytical solutions of the internal waves of deep-stratified fluids. Thermal Science, 2021, 25, 227-232.	0.5	1
84	Stable novel and accurate solitary wave solutions of an integrable equation: Qiao model. Open Physics, 2021, 19, 742-752.	0.8	11
85	Faster and Slower Soliton Phase Shift: Oceanic Waves Affected by Earth Rotation. Mathematics, 2021, 9, 3223.	1.1	5
86	Analytical and numerical simulations for the kinetics of phase separation in iron (Fe–Cr–X (X=Mo,) Tj ETQq() 0 0 rgBT 1.2	/Overlock 10
87	On the computational and numerical solutions of the transmission of nerve impulses of an excitable system (the neuron system). Journal of Intelligent and Fuzzy Systems, 2020, 38, 2603-2610.	0.8	8
88	Abundant numerical and analytical solutions of the generalized formula of Hirota-Satsuma coupled KdV system. Chaos, Solitons and Fractals, 2020, 131, 109473.	2.5	67
89	Analytical and numerical solutions for the current and voltage model on an electrical transmission line with time and distance. Physica Scripta, 2020, 95, 055206	1.2	37

⁹⁰Computational and Numerical Solutions for 2+1-Dimensional Integrable Schwarz–Korteweg–de Vries
Equation with Miura Transform. Complexity, 2020, 2020, 1-13.0.93

#	Article	IF	CITATIONS
91	On the Analytical and Numerical Solutions in the Quantum Magnetoplasmas: The Atangana Conformable Derivative (<mml:math)="" 0.784314<="" 1="" etqq1="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>rgBT /Ov</td><td>verlock 10 Tf</td></mml:math>	rgBT /Ov	verlock 10 Tf
92	Dynamical Behaviour of the Light Pulses through the Optical Fiber: Two Nonlinear Atangana Conformable Fractional Evolution Equations. Journal of Mathematics, 2020, 2020, 1-10.	0.5	5
93	Computational solutions of the HIV-1 infection of CD4 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.svg"><mml:msup><mml:mrow /><mml:mo>+</mml:mo></mml:mrow </mml:msup>T-cells fractional mathematical model that causes acquired immunodeficiency syndrome (AIDS) with the effect of antiviral drug therapy. Chaos, Solitons</mml:math 	2.5	49
94	Abundant new computational wave solutions of the GM-DP-CH equation via two modified recent computational schemes. Journal of Taibah University for Science, 2020, 14, 1554-1562.	1.1	25
95	Abundant distinct types of solutions for the nervous biological fractional FitzHugh–Nagumo equation via three different sorts of schemes. Advances in Difference Equations, 2020, 2020, .	3.5	19
96	On Highly Dimensional Elastic and Nonelastic Interaction between Internal Waves in Straight and Varying Cross-Section Channels. Mathematical Problems in Engineering, 2020, 2020, 1-9.	0.6	4
97	Two effective computational schemes for a prototype of an excitable system. AIP Advances, 2020, 10, 105120.	0.6	22
98	Multiple Lump Novel and Accurate Analytical and Numerical Solutions of the Three-Dimensional Potential Yu–Toda–Sasa–Fukuyama Equation. Symmetry, 2020, 12, 2081.	1.1	9
99	On the numerical investigation of the interaction in plasma between (high & low) frequency of (Langmuir & ion-acoustic) waves. Results in Physics, 2020, 18, 103317.	2.0	43
100	Computational simulation for the (1 + 1)-dimensional Ito equation arising quantum mechanics and nonlinear optics. Results in Physics, 2020, 19, 103572.	2.0	17
101	New exact solitary waves solutions to the fractional Fokas-Lenells equation via Atangana-Baleanu derivative operator. International Journal of Modern Physics B, 2020, 34, 2050309.	1.0	9
102	On the stable computational, semi-analytical, and numerical solutions of the Langmuir waves in an ionized plasma. Journal of Intelligent and Fuzzy Systems, 2020, 38, 2833-2845.	0.8	3
103	ON THE NEW EXPLICIT SOLUTIONS OF THE FRACTIONAL NONLINEAR SPACE-TIME NUCLEAR MODEL. Fractals, 2020, 28, 2040035.	1.8	47
104	ON EXPLICIT WAVE SOLUTIONS OF THE FRACTIONAL NONLINEAR DSW SYSTEM VIA THE MODIFIED KHATER METHOD. Fractals, 2020, 28, 2040034.	1.8	34
105	Novel exact solutions of the fractional Bogoyavlensky–Konopelchenko equation involving the Atangana-Baleanu-Riemann derivative. AEJ - Alexandria Engineering Journal, 2020, 59, 2957-2967.	3.4	55
106	Ample soliton waves for the crystal lattice formation of the conformable time-fractional (N + 1) Sinh-Gordon equation by the modified Khater method and the Painlevé property. Journal of Intelligent and Fuzzy Systems, 2020, 38, 2745-2752.	0.8	11
107	Dynamical analysis of the nonlinear complex fractional emerging telecommunication model with higher–order dispersive cubic–quintic. AEJ - Alexandria Engineering Journal, 2020, 59, 1425-1433.	3.4	77
108	Exact Traveling and Nano-Solitons Wave Solitons of the Ionic Waves Propagating along Microtubules in Living Cells. Mathematics, 2020, 8, 697.	1.1	20

#	Article	IF	CITATIONS
109	The new structure of analytical and semi-analytical solutions of the longitudinal plasma wave equation in a magneto-electro-elastic circular rod. Modern Physics Letters B, 2020, 34, 2050123.	1.0	23
110	Copious Closed Forms of Solutions for the Fractional Nonlinear Longitudinal Strain Wave Equation in Microstructured Solids. Mathematical Problems in Engineering, 2020, 2020, 1-8.	0.6	11
111	Inelastic Interaction and Blowup New Solutions of Nonlinear and Dispersive Long Gravity Waves. Journal of Function Spaces, 2020, 2020, 1-10.	0.4	10
112	Optical wave solutions of the higher-order nonlinear SchrĶdinger equation with the non-Kerr nonlinear term via modified Khater method. Modern Physics Letters B, 2020, 34, 2050044.	1.0	51
113	Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term. Results in Physics, 2020, 16, 103000.	2.0	64
114	Abundant new solutions of the transmission of nerve impulses of an excitable system. European Physical Journal Plus, 2020, 135, 1.	1.2	25
115	An explicit plethora of solution for the fractional nonlinear model of the low–pass electrical transmission lines via Atangana–Baleanu derivative operator. AEJ - Alexandria Engineering Journal, 2020, 59, 1205-1214.	3.4	49
116	Computational and numerical simulations for the nonlinear fractional Kolmogorov–Petrovskii–Piskunov (FKPP) equation. Physica Scripta, 2020, 95, 055213.	1.2	31
117	Analytical, semi-analytical, and numerical solutions for the Cahn–Allen equation. Advances in Difference Equations, 2020, 2020, .	3.5	42
118	On new computational and numerical solutions of the modified Zakharov–Kuznetsov equation arising in electrical engineering. AEJ - Alexandria Engineering Journal, 2020, 59, 1099-1105.	3.4	40
119	Approximate Simulations for the Non-linear Long-Short Wave Interaction System. Frontiers in Physics, 2020, 7, .	1.0	12
120	Computational simulations of the couple Boiti–Leon–Pempinelli (BLP) system and the (3+1)-dimensional Kadomtsev–Petviashvili (KP) equation. AIP Advances, 2020, 10, .	0.6	28
121	On complex wave structures related to the nonlinear long–short wave interaction system: Analytical and numerical techniques. AlP Advances, 2020, 10, .	0.6	18
122	Abundant analytical solutions of the fractional nonlinear (2 + 1)-dimensional BLMP equation arising in incompressible fluid. International Journal of Modern Physics B, 2020, 34, 2050084.	1.0	28
123	Novel soliton waves of two fluid nonlinear evolutions models in the view of computational scheme. International Journal of Modern Physics B, 2020, 34, 2050096.	1.0	37
124	Abundant analytical and numerical solutions of the fractional microbiological densities model in bacteria cell as a result of diffusion mechanisms. Chaos, Solitons and Fractals, 2020, 136, 109824.	2.5	51
125	Exact optical solutions of the (2+1) dimensions Kundu–Mukherjee–Naskar model via the new extended direct algebraic method. Modern Physics Letters B, 2020, 34, 2050225.	1.0	35
126	Interaction solutions of a variable-coefficient Kadomtsev–Petviashvili equation with self-consistent sources. International Journal of Nonlinear Sciences and Numerical Simulation, 2020, .	0.4	1

Mostafa Khater

#	Article	IF	CITATIONS
127	Effective computational schemes for a mathematical model of relativistic electrons arising in the laser thermonuclear fusion. Results in Physics, 2020, 19, 103701.	2.0	14
128	On abundant new solutions of two fractional complex models. Advances in Difference Equations, 2020, 2020, .	3.5	26
129	Oblique explicit wave solutions of the fractional biological population (BP) and equal width (EW) models. Advances in Difference Equations, 2020, 2020, .	3.5	23
130	The plethora of explicit solutions of the fractional KS equation through liquid–gas bubbles mix under the thermodynamic conditions via Atangana–Baleanu derivative operator. Advances in Difference Equations, 2020, 2020, .	3.5	55
131	New optical solitons of conformable resonant nonlinear SchrĶdinger's equation. Open Physics, 2020, 18, 761-769.	0.8	27
132	New optical explicit plethora of the resonant Schrodinger's equation via two recent computational schemes. Thermal Science, 2020, 24, 247-255.	0.5	3
133	New optical explicit plethora of the resonant Schrodinger's equation via two recent computational schemes. Thermal Science, 2020, 24, 247-255.	0.5	0
134	Structures of exact and solitary optical solutions for the higher-order nonlinear SchrĶdinger equation and its applications in mono-mode optical fibers. Modern Physics Letters B, 2019, 33, 1950279.	1.0	43
135	New analytical wave structures for the (3 + 1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications. Results in Physics, 2019, 14, 102491.	2.0	78
136	Numerical solutions of nonlinear fractional Wu–Zhang system for water surface versus three approximate schemes. Journal of Ocean Engineering and Science, 2019, 4, 144-148.	1.7	51
137	Complex wave structures for abundant solutions related to the complex Ginzburg–Landau model. Optik, 2019, 192, 162927.	1.4	83
138	Lump soliton wave solutions for the (2+1)-dimensional Konopelchenko–Dubrovsky equation and KdV equation. Modern Physics Letters B, 2019, 33, 1950199.	1.0	69
139	New exact traveling wave solutions of biological population model via the extended rational sinh-cosh method and the modified Khater method. Modern Physics Letters B, 2019, 33, 1950338.	1.0	79
140	Dispersive long wave of nonlinear fractional Wu-Zhang system via a modified auxiliary equation method. AIP Advances, 2019, 9, .	0.6	107
141	Chaos and Relativistic Energy-Momentum of the Nonlinear Time Fractional Duffing Equation. Mathematical and Computational Applications, 2019, 24, 10.	0.7	26
142	Explicit Lump Solitary Wave of Certain Interesting (3+1)-Dimensional Waves in Physics via Some Recent Traveling Wave Methods. Entropy, 2019, 21, 397.	1.1	52
143	A study of optical wave propagation in the nonautonomous SchrĶdinger-Hirota equation with power-law nonlinearity. Results in Physics, 2019, 13, 102157.	2.0	94
144	Analytical and Approximate Solutions for Complex Nonlinear Schrödinger Equation via Generalized Auxiliary Equation and Numerical Schemes. Communications in Theoretical Physics, 2019, 71, 1267.	1.1	31

#	Article	IF	CITATIONS
145	The shock peakon wave solutions of the general Degasperis–Procesi equation. International Journal of Modern Physics B, 2019, 33, 1950351.	1.0	27
146	Modified Auxiliary Equation Method versus Three Nonlinear Fractional Biological Models in Present Explicit Wave Solutions. Mathematical and Computational Applications, 2019, 24, 1.	0.7	36
147	On exact and approximate solutions of (2+1)-dimensional Konopelchenko-Dubrovsky equation via modified simplest equation and cubic B-spline schemes. Thermal Science, 2019, 23, 1889-1899.	0.5	12
148	Analytical and semi-analytical wave solutions for longitudinal wave equation via modified auxiliary equation method and Adomian decomposition method. Thermal Science, 2019, 23, 1943-1957.	0.5	18
149	Study on the solitary wave solutions of the ionic currents on microtubules equation by using the modified Khater method. Thermal Science, 2019, 23, 2053-2062.	0.5	25
150	Bifurcations of solitary wave solutions for (two and three)-dimensional nonlinear partial differential equation in quantum and magnetized plasma by using two different methods. Results in Physics, 2018, 9, 142-150.	2.0	16
151	Optical soliton and rogue wave solutions of the ultra-short femto-second pulses in an optical fiber via two different methods and its applications. Optik, 2018, 158, 434-450.	1.4	44
152	Solitary traveling wave solutions of pressure equation of bubbly liquids with examination for viscosity and heat transfer. Results in Physics, 2018, 8, 292-303.	2.0	13
153	New optical soliton solutions for nonlinear complex fractional Schrödinger equation via new auxiliary equation method and novel \$\$({G'}/{G})\$\$ (G ′ / G) -expansion method. Pramana - Journal of Physics, 2018, 90, 1.	0.9	23
154	Dispersive optical soliton solutions of the generalized Radhakrishnan–Kundu–Lakshmanan dynamical equation with power law nonlinearity and its applications. Optik, 2018, 164, 54-64.	1.4	54
155	Optical soliton and bright–dark solitary wave solutions of nonlinear complex Kundu–Eckhaus dynamical equation of the ultra-short femtosecond pulses in an optical fiber. Optical and Quantum Electronics, 2018, 50, 1.	1.5	13
156	Implementation of three reliable methods for finding the exact solutions of (2Â+Â1) dimensional generalized fractional evolution equations. Optical and Quantum Electronics, 2018, 50, 1.	1.5	11
157	Dispersive solitary wave solutions of new coupled Konno-Oono, Higgs field and Maccari equations and their applications. Journal of King Saud University - Science, 2018, 30, 417-423.	1.6	27
158	Dispersive optical soliton solutions for higher order nonlinear Sasa-Satsuma equation in mono mode fibers via new auxiliary equation method. Superlattices and Microstructures, 2018, 113, 346-358.	1.4	65
159	Structure of solitary wave solutions of the nonlinear complex fractional generalized Zakharov dynamical system. Advances in Difference Equations, 2018, 2018, .	3.5	22
160	Reply of the manuscript of authors (Elsayed and Abdul-Ghani) in title (Comment on the paper of our) Tj ETQq0 0 0 Microstructures, 2018, 123, 460-464.	rgBT /Ov 1.4	erlock 10 Tf 6
161	Comment on four papers of Elsayed M.E. Zayed, Abdul-Ghani Al-Nowehy, Reham M.A. Shohib and Khaled A.E. Alurrfi (Optik 130 (2017) 1295–1311 & Optik 143 (2017) 84–103 & Optik 158 (2018) 970–	984 &am	p;))oTj ETQq1
162	Structure of optical soliton solutions for the generalized higher-order nonlinear SchrĶdinger equation with light-wave promulgation in an optical fiber. Optical and Quantum Electronics, 2018, 50, 1.	1.5	17

#	Article	IF	CITATIONS
163	Solitary wave solution of the generalized Hirota–Satsuma coupled KdV system. Journal of the Egyptian Mathematical Society, 2017, 25, 8-12.	0.6	25
164	Solitary wave solutions for the generalized Zakharov–Kuznetsov–Benjamin–Bona–Mahony nonlinear evolution equation. Journal of Ocean Engineering and Science, 2017, 2, 137-142.	1.7	33
165	Bifurcations of solitary wave solutions for the three dimensional Zakharov–Kuznetsov–Burgers equation and Boussinesq equation with dual dispersion. Optik, 2017, 143, 104-114.	1.4	44
166	New wave solutions for the fractional-order biological population model, time fractional burgers, Drinfel'd–Sokolov–Wilson and system of shallow water wave equations and their applications. European Journal of Computational Mechanics, 2017, 26, 508-524.	0.6	18
167	New exact solutions for the time fractional coupled Boussinesq–Burger equation and approximate long water wave equation in shallow water. Journal of Ocean Engineering and Science, 2017, 2, 223-228.	1.7	53
168	Bifurcations of new multi soliton solutions of the van der Waals normal form for fluidized granular matter via six different methods. Results in Physics, 2017, 7, 2028-2035.	2.0	45
169	Elliptic and solitary wave solutions for Bogoyavlenskii equations system, couple Boiti-Leon-Pempinelli equations system and Time-fractional Cahn-Allen equation. Results in Physics, 2017, 7, 2325-2333.	2.0	69
170	Bifurcations of traveling wave solutions for Dodd–Bullough–Mikhailov equation and coupled Higgs equation and their applications. Chinese Journal of Physics, 2017, 55, 1310-1318.	2.0	53
171	Solitary Wave Solutions of the Benjamin-BonaMahoney-Burgers Equation with Dual Power-Law Nonlinearity. Applied Mathematics and Information Sciences, 2017, 11, 1347-1351.	0.7	39
172	Exact traveling wave solutions for the generalized Hirota-Satsuma couple KdV system using the exp(â~'φ(ξ))-expansion method. Cogent Mathematics, 2016, 3, 1172397.	0.4	26
173	Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Applied Mathematical Modelling, 2016, 40, 1769-1775.	2.2	142
174	The exp(-φ(ξ))-Expansion Method and Its Application for Solving Nonlinear Evolution Equations. International Journal of Modern Nonlinear Theory and Application, 2015, 04, 37-47.	0.1	72
175	Traveling wave solutions for the Couple Boiti-Leon-Pempinelli System by using extended Jacobian elliptic function expansion method. Journal of Advances in Physics, 2015, 11, 3134-3138.	0.2	5
176	Extended Jacobian Elliptic Function Expansion Method and Its Applications in Biology. Applied Mathematics, 2015, 06, 1174-1181.	0.1	14
177	Exact Traveling Wave Solutions for the System of Shallow Water Wave Equations and Modified Liouville Equation Using Extended Jacobian Elliptic Function Expansion Method. American Journal of Computational Mathematics, 2014, 04, 455-463.	0.2	29
178	On the dynamics of strong Langmuir turbulence through the five recent numerical schemes in the plasma physics. Numerical Methods for Partial Differential Equations, 0, , .	2.0	6
179	Abundant breather and semi-analytical investigation: On high-frequency waves' dynamics in the relaxation medium. Modern Physics Letters B, 0, , 2150372.	1.0	68
180	New explicit solitons for the general modified fractional Degasperis–Procesi–Camassa–Holm equation with a truncated M-fractional derivative. Modern Physics Letters B, 0, , .	1.0	2

#	Article	IF	CITATIONS
181	Dynamical Behavior of the Long Waves in the Nonlinear Dispersive Media Through Analytical and Numerical Investigation. Fractals, 0, , .	1.8	2
182	Novel and accurate solitary wave solutions of the conformable fractional nonlinear Schrödinger equation. Journal of Low Frequency Noise Vibration and Active Control, 0, , 146134842110689.	1.3	8