
Ian M Rogers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1660694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Decellularization of porcine kidney with submicellar concentrations of SDS results in the retention of ECM proteins required for the adhesion and maintenance of human adult renal epithelial cells. Biomaterials Science, 2022, 10, 2972-2990.	2.6	8
2	Ex Vivo Perfusion Using a Mathematical Modeled, Controlled Gas Exchange Self-Contained Bioreactor Can Maintain a Mouse Kidney for Seven Days. Cells, 2022, 11, 1822.	1.8	2
3	TP63 basal cells are indispensable during endoderm differentiation into proximal airway cells on acellular lung scaffolds. Npj Regenerative Medicine, 2021, 6, 12.	2.5	25
4	Rapid target validation in a Cas9-inducible hiPSC derived kidney model. Scientific Reports, 2021, 11, 16532.	1.6	7
5	Umbilical Cord Tissue as a Source of Young Cells for the Derivation of Induced Pluripotent Stem Cells Using Non-Integrating Episomal Vectors and Feeder-Free Conditions. Cells, 2021, 10, 49.	1.8	8
6	Generation of infant- and pediatric-derived urinary induced pluripotent stem cells competent to form kidney organoids. Pediatric Research, 2020, 87, 647-655.	1.1	29
7	Limitations of recellularized biological scaffolds for human transplantation. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 521-538.	1.3	19
8	Recapitulating kidney development in vitro by priming and differentiating mouse embryonic stem cells in monolayers. Npj Regenerative Medicine, 2020, 5, 7.	2.5	7
9	Banking Mesenchymal Stromal Cells from Umbilical Cord Tissue: Large Sample Size Analysis Reveals Consistency Between Donors. Stem Cells Translational Medicine, 2019, 8, 1041-1054.	1.6	16
10	Decellularizing and Recellularizing Adult Mouse Kidneys. Methods in Molecular Biology, 2019, 1926, 169-184.	0.4	7
11	Interrupted reprogramming of alveolar type II cells induces progenitor-like cells that ameliorate pulmonary fibrosis. Npj Regenerative Medicine, 2018, 3, 14.	2.5	13
12	Topical Application of Culture-Expanded CD34+ Umbilical Cord Blood Cells from Frozen Units Accelerates Healing of Diabetic Skin Wounds in Mice. Stem Cells Translational Medicine, 2018, 7, 591-601.	1.6	6
13	Acellular Mouse Kidney ECM can be Used as a Three-Dimensional Substrate to Test the Differentiation Potential of Embryonic Stem Cell Derived Renal Progenitors. Stem Cell Reviews and Reports, 2017, 13, 513-531.	5.6	28
14	Generation of Induced Progenitor-like Cells from Mature Epithelial Cells Using Interrupted Reprogramming. Stem Cell Reports, 2017, 9, 1780-1795.	2.3	30
15	Advances in Umbilical Cord Blood Therapy: Hematopoietic Stem Cell Transplantation and Beyond. Pancreatic Islet Biology, 2017, , 139-168.	0.1	1
16	AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood, 2015, 125, 2120-2130.	0.6	227
17	Periostin is critical for improving the therapeutic properties of adipocyte-derived stem cells. Stem Cell Research and Therapy, 2015, 6, 214.	2.4	2
18	CD24 tracks divergent pluripotent states in mouse and human cells. Nature Communications, 2015, 6, 7329.	5.8	76

IAN M ROGERS

#	Article	IF	CITATIONS
19	Acellular Lung Scaffolds Direct Differentiation of Endoderm to Functional Airway Epithelial Cells: Requirement of Matrix-Bound HS Proteoglycans. Stem Cell Reports, 2015, 4, 419-430.	2.3	91
20	Small RNA changes en route to distinct cellular states of induced pluripotency. Nature Communications, 2014, 5, 5522.	5.8	54
21	Divergent reprogramming routes lead to alternative stem-cell states. Nature, 2014, 516, 192-197.	13.7	123
22	Genome-wide characterization of the routes to pluripotency. Nature, 2014, 516, 198-206.	13.7	187
23	An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator. Nature Communications, 2014, 5, 5619.	5.8	108
24	An Expanded Population of CD34+ Cells from Frozen Banked Umbilical Cord Blood Demonstrate Tissue Repair Mechanisms of Mesenchymal Stromal Cells and Circulating Angiogenic Cells in an Ischemic Hind Limb Model. Stem Cell Reviews and Reports, 2014, 10, 338-350.	5.6	19
25	A comparison of intravenous and intradiscal delivery of multipotential stem cells on the healing of injured intervertebral disk. Journal of Orthopaedic Research, 2014, 32, 819-825.	1.2	35
26	The transfer of host MHC class I protein protects donor cells from NK cell and macrophage-mediated rejection during hematopoietic stem cell transplantation and engraftment in mice. Stem Cells, 2013, 31, 2242-2252.	1.4	17
27	Trogocytosis in allogeneic transplants. Chimerism, 2013, 4, 142-143.	0.7	5
28	Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors. Journal of Clinical Investigation, 2013, 123, 315-328.	3.9	117
29	AML Cells Have Altered Mitochondrial Biogenesis and Low Spare Reserve Capacity in Their Respiratory Chain That Renders Them Susceptible to Oxidative Metabolic Stress Blood, 2012, 120, 2581-2581.	0.6	7
30	Toward Transgene-Free Induced Pluripotent Stem Cells: Lessons from Transdifferentiation Studies. Cellular Reprogramming, 2011, 13, 273-280.	0.5	4
31	Induced Pluripotent Stem Cells from Human Kidney. Journal of the American Society of Nephrology: JASN, 2011, 22, 1179-1180.	3.0	6
32	Lysosomal Disruption Selectively Targets Leukemia Cells and Leukemia Stem Cells Through A Mechanism Related to Increased Reactive Oxygen Species Production. Blood, 2011, 118, 61-61.	0.6	5
33	Targeting Cancer Stem Cell Lines as a New Treatment of Human Cancer. Recent Patents on Anti-Cancer Drug Discovery, 2010, 5, 205-218.	0.8	16
34	The Effect of Umbilical Cord Blood Cells on Outcomes After Experimental Traumatic Spinal Cord Injury. Spine, 2010, 35, 1520-1526.	1.0	41
35	The AC133+CD38â^', but not the rhodamine-low, phenotype tracks LTC-IC and SRC function in human cord blood ex vivo expansion cultures. Blood, 2010, 115, 257-260.	0.6	13
36	Epigenetic changes to human umbilical cord blood cells cultured with three proteins indicate partial reprogramming to a pluripotent state. Experimental Cell Research, 2010, 316, 927-939.	1.2	12

IAN M ROGERS

#	Article	IF	CITATIONS
37	Transfer of Recipient MHC Proteins to Donor Cells (trogocytosis) During Xenograft Bone Marrow Transplantation. Blood, 2010, 116, 4698-4698.	0.6	Ο
38	Cell Therapy for Alport Syndrome. Journal of the American Society of Nephrology: JASN, 2009, 20, 2279-2281.	3.0	2
39	Neural progenitors, neurons and oligodendrocytes from human umbilical cord blood cells in a serum-free, feeder-free cell culture. Biochemical and Biophysical Research Communications, 2009, 379, 217-221.	1.0	42
40	Transdifferentiation of endogenous cells: Cell therapy without the cells. Cell Cycle, 2009, 8, 4023-4028.	1.3	9
41	Bone Marrow Transplantation Results in Human Donor Blood Cells Acquiring and Displaying Mouse Recipient Class I MHC and CD45 Antigens on Their Surface. PLoS ONE, 2009, 4, e8489.	1.1	20
42	A Simplified Procedure for Hematopoietic Stem Cell Amplification Using a Serum-Free, Feeder Cell-Free Culture System. Biology of Blood and Marrow Transplantation, 2008, 14, 927-937.	2.0	13
43	Umbilical Cord Blood: A Unique Source of Pluripotent Stem Cells for Regenerative Medicine. Current Stem Cell Research and Therapy, 2007, 2, 301-309.	0.6	96
44	Identification and analysis of in vitro cultured CD45-positive cells capable of multi-lineage differentiation. Experimental Cell Research, 2007, 313, 1839-1852.	1.2	77
45	Umbilical cord-derived stem cells for tissue therapy: current and future uses. Regenerative Medicine, 2006, 1, 777-787.	0.8	24
46	Clinically Relevant Expansion of Hematopoietic Stem Cells with Conserved Function in a Single-Use, Closed-System Bioprocess. Biology of Blood and Marrow Transplantation, 2006, 12, 1020-1030.	2.0	50
47	Dynamic changes in cellular and microenvironmental composition can be controlled to elicit in vitro human hematopoietic stem cell expansion. Experimental Hematology, 2005, 33, 1229-1239.	0.2	59
48	Umbilical cord blood stem cells. Best Practice and Research in Clinical Obstetrics and Gynaecology, 2004, 18, 893-908.	1.4	112
49	Lifeline in an ethical quagmire: umbilical cord blood as an alternative to embryonic stem cells*1. Sexuality, Reproduction & Menopause, 2004, 2, 64-70.	1.0	4
50	Resveratrol, a natural aryl hydrocarbon receptor antagonist, protects lung from DNA damage and apoptosis caused by benzo[a]pyrene. Journal of Applied Toxicology, 2003, 23, 255-261.	1.4	145
51	Stem cells: you can't tell a cell by its cover. Human Reproduction Update, 2003, 9, 25-33.	5.2	11
52	Epigenetic alterations brought about by lithium treatment disrupt mouse embryo development. Molecular Reproduction and Development, 1996, 45, 163-170.	1.0	16
53	Site of action of imprinted genes revealed by phenotypic analysis of parthenogenetic embryos. Genesis, 1993, 14, 239-248.	3.3	24
54	Several epitopes of p85 glycoprotein (CDw44) are dependent on intact disulphide bonds. Isolation of cDNA clones requires a polyclonal antibody raised against the reduced protein. Bioscience Reports, 1988, 8, 359-368.	1.1	1