Xiaohong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1660620/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PIC catalysis based on polyoxometalates promoting 5-HMF oxidation in H2O/MIBK biphase. Chinese Chemical Letters, 2023, 34, 107548.	9.0	0
2	Oxidation of phthalate acid esters using hydrogen peroxide and polyoxometalate/graphene hybrids. Journal of Hazardous Materials, 2022, 422, 126867.	12.4	7
3	Synthesis of heteropolyacid (HPA) functionalized graphitic carbon nitride as effective catalysts for converting polysaccharides into high-value chemicals. Resources, Conservation and Recycling, 2022, 185, 106473.	10.8	2
4	Developing Dawson-Type Polyoxometalates Used as Highly Efficient Catalysts for Lignocellulose Transformation. ACS Catalysis, 2022, 12, 9213-9225.	11.2	9
5	Polyoxometalates as catalysts for fluorescence amplification in rapid and sensitive detection of artemisinin. Analytica Chimica Acta, 2021, 1143, 101-108.	5.4	23
6	Achieving deep desulfurization with inverse-micellar polyoxometalates and oxygen. RSC Advances, 2021, 11, 9043-9047.	3.6	2
7	Hydroxyapatiteâ€Supported Polyoxometalates for the Highly Selective Aerobic Oxidation of 5â€Hydroxymethylfurfural or Glucose to 2,5â€Diformylfuran under Atmospheric Pressure. ChemPlusChem, 2021, 86, 997-1005.	2.8	3
8	Fabrication of ordered mesoporous POMs/SiO2–NH2 nanofibers for production of DFF from 5-HMF for cellulose wastewater resource recovery. Chemosphere, 2021, 277, 130316.	8.2	16
9	Amphiphilic peroxo polyoxometalate as reaction control phase transfer catalyst for efficient epoxidation of olefins. Micro and Nano Letters, 2021, 16, 615-620.	1.3	2
10	Facile preparation of polyoxometalate nanoparticles <i>via</i> a solid-state chemical reaction for aerobic oxidative desulfurization catalysis. Dalton Transactions, 2021, 50, 12179-12187.	3.3	2
11	A fast and facile electrochemical method for the simultaneous detection of epinephrine, uric acid and folic acid based on ZrO2/ZnO nanocomposites as sensing material. Analytica Chimica Acta, 2020, 1104, 69-77.	5.4	49
12	The fabrication of trifunctional polyoxometalate hybrids for the cascade conversion of glycerol to lactic acid. Catalysis Science and Technology, 2020, 10, 207-214.	4.1	10
13	Fabrication of folate functionalized polyoxometalate nanoparticle to simultaneously detect H2O2 and sarcosine in colorimetry. Sensors and Actuators B: Chemical, 2020, 304, 127429.	7.8	34
14	Heterogenization of polyoxometalates as solid catalysts in aerobic oxidation of glycerol. Catalysis Science and Technology, 2020, 10, 3771-3781.	4.1	6
15	Ag@AgCl nanoparticles in-situ deposited cellulose acetate/silk fibroin composite film for photocatalytic and antibacterial applications. Cellulose, 2020, 27, 7721-7737.	4.9	28
16	Surfactant decorated hydrotalcite-supported polyoxometalates for aerobic oxidation of 5-hydroxymethylfurfural and monosaccharides. Sustainable Energy and Fuels, 2020, 4, 2236-2248.	4.9	11
17	In situ loading of polyurethane/negative ion powder composite film with visible-light-responsive Ag3PO4@AgBr particles for photocatalytic and antibacterial applications. European Polymer Journal, 2020, 125, 109515.	5.4	31
18	Electrochemical sensor based on anÂelectrode modified withÂporous graphitic carbon nitride nanosheetsÂ(C3N4)Âembedded in graphene oxideÂfor simultaneous determination of ascorbic acid, dopamine and uric acid. Mikrochimica Acta, 2020, 187, 149.	5.0	38

#	Article	IF	CITATIONS
19	The fabrication of IMo ₆ @iPAF-1 as an enzyme mimic in heterogeneous catalysis for oxidative desulfurization under O ₂ or air. Journal of Materials Chemistry A, 2020, 8, 9813-9824.	10.3	23
20	POMs nanofibers for the oxidation of 5-HMF with O ₂ . Chinese Science Bulletin, 2020, 65, 940-947.	0.7	1
21	Synergic Catalysts of Polyoxometalate@Cationic Porous Aromatic Frameworks: Reciprocal Modulation of Both Capture and Conversion Materials. Advanced Materials, 2019, 31, e1902444.	21.0	65
22	Enzyme-like catalysis of polyoxometalates for chemiluminescence: Application in ultrasensitive detection of H2O2 and blood glucose. Talanta, 2019, 205, 120139.	5.5	56
23	A promising role of interferon regulatory factor 5 as an early warning biomarker for the development of human non-small cell lung cancer. Lung Cancer, 2019, 135, 47-55.	2.0	10
24	Polyoxometalate Immobilized on Graphene via Click Reaction for Simultaneous Dismutation of H ₂ O ₂ and Oxidation of Sulfur Mustard Simulant. ACS Applied Nano Materials, 2019, 2, 6971-6981.	5.0	21
25	Full Utilization of Lignocellulose with Ionic Liquid Polyoxometalates in a Oneâ€Pot Threeâ€Step Conversion. ChemSusChem, 2019, 12, 4936-4945.	6.8	17
26	Fabrication of Trifunctional Polyoxometalateâ€Decorated Chitosan Nanofibers for Selective Production of 2,5â€Diformylfuran. ChemSusChem, 2019, 12, 3515-3523.	6.8	20
27	POM@surf(n)/CeO2 electrospun nanofibers for the facile oxidation of 5-HMF to DFF. Applied Catalysis A: General, 2019, 583, 117122.	4.3	19
28	Aerobic oxidation of glycerol catalyzed by M salts of PMo12O403-(M = K+, Zn2+, Cu2+, Al3+, Cr3+, Fe3+). Applied Catalysis A: General, 2019, 579, 52-57.	4.3	6
29	High production of levulinic acid from cellulosic feedstocks being catalyzed by temperature-responsive transition metal substituted heteropolyacids. Renewable Energy, 2019, 141, 802-813.	8.9	35
30	A Polyoxometalateâ€Based Microfluidic Device for Liquidâ€Phase Oxidation of Glycerol. ChemSusChem, 2019, 12, 2550-2553.	6.8	9
31	An ultrasensitive sensor based on polyoxometalate and zirconium dioxide nanocomposites hybrids material for simultaneous detection of toxic clenbuterol and ractopamine. Sensors and Actuators B: Chemical, 2019, 288, 347-355.	7.8	38
32	Fast degradation of phthalate acid esters by polyoxometalate nanocatalysts through adsorption, esterolysis and oxidation. Journal of Hazardous Materials, 2019, 368, 788-796.	12.4	12
33	Visual detection of H ₂ O ₂ and melamine based on PW ₁₁ MO ₃₉ ^{nâ^'} (M = Cu ²⁺ , Co ²⁺ ,) Tj ETQq1 PW ₉ M ₃ O ₃₄ ^{nâ^'} (M = Cu ²⁺ ,) Tj ETQq1 1 0.784	1 0.78431 2.8 1314 rgBT	4 rgBT /Over 14 /Overlock 11
34	Assembly of metallophthalocyanine-polyoxometalate hybrid for highly efficient desulfurization of organic and inorganic sulfur under aerobic conditions. Fuel, 2019, 241, 861-869.	6.4	27
35	Fabrication of mesoporous POMs/SiO ₂ nanofibers through electrospinning for oxidative conversion of biomass by H ₂ O ₂ and oxygen. RSC Advances, 2018, 8, 3499-3511.	3.6	19
36	Decoratedâ€magneticâ€nanoparticleâ€supported bromine as a recyclable catalyst for the oxidation of sulfides. Journal of Applied Polymer Science, 2018, 135, 46036.	2.6	10

#	Article	IF	CITATIONS
37	Catalyzing Cascade Production of Methyl Levulinate from Polysaccharides Using Heteropolyacids HnPW11MO39with BrAֻnsted/Lewis Acidic Sites. ACS Sustainable Chemistry and Engineering, 2018, 6, 165-176.	6.7	38
38	Expression Levels of Interferon Regulatory Factor 5 (IRF5) and Related Inflammatory Cytokines Associated with Severity, Prognosis, and Causative Pathogen in Patients with Community-Acquired Pneumonia. Medical Science Monitor, 2018, 24, 3620-3630.	1.1	15
39	First triple-functional polyoxometalate Cs10.6[H2.4GeNb13O41] for highly selective production of methyl levulinate directly from cellulose. Cellulose, 2018, 25, 6405-6419.	4.9	18
40	Genetic variants of interferon regulatory factor 5 associated with the risk of community-acquired pneumonia. Gene, 2018, 679, 73-80.	2.2	8
41	Incorporation of Ce3+ ions into dodecatungstophosphoric acid for the production of biodiesel from waste cooking oil. Materials Science and Engineering C, 2018, 92, 922-931.	7.3	7
42	Fabrication of polyoxometalate/GO/PDDA hybrid nanocomposite modified electrode and electrocatalysis for nitrite ion, ascorbic acid and dopamine. Journal of Electroanalytical Chemistry, 2018, 824, 91-98.	3.8	32
43	Fabrication of Metal-Substituted Polyoxometalates for Colorimetric Detection of Dopamine and Ractopamine. Materials, 2018, 11, 674.	2.9	20
44	Synthesis of Butyl Levulinate Based on αâ€Angelica Lactone in the Presence of Easily Separable Heteropoly Acid Catalysts. ChemSusChem, 2017, 10, 1494-1500.	6.8	22
45	Heteropolyacids embedded in a lipid bilayer covalently bonded to graphene oxide for the facile one-pot conversion of glycerol to lactic acid. Journal of Materials Chemistry A, 2017, 5, 8325-8333.	10.3	27
46	Deep oxidative desulfurization catalyzed by (NH 4) 5 H 6 PV 8 Mo 4 O 40 using molecular oxygen as an oxidant. Fuel Processing Technology, 2017, 160, 136-142.	7.2	48
47	Designation of choline functionalized polyoxometalates as highly active catalysts in aerobic desulfurization on a combined oxidation and extraction procedure. Fuel, 2017, 207, 13-21.	6.4	26
48	Production of Biodiesel Through Esterification Reaction Using Choline Exchanging Polytungstoboronic Acids as Temperature-Responsive Catalysts. Catalysis Surveys From Asia, 2017, 21, 151-159.	2.6	2
49	Efficient mineralization of phenol by a temperature-responsive polyoxometalate catalyst under wet peroxide oxidation at lower temperatures. RSC Advances, 2017, 7, 43681-43688.	3.6	4
50	An Oligodeoxynucleotide with AAAG Repeats Significantly Attenuates Burn-induced Systemic inflammatory Responses by inhibiting interferon Regulatory Factor 5 Pathway. Molecular Medicine, 2017, 23, 166-176.	4.4	8
51	Decoration of chitosan microspheres with BrĄ̃nsted heteropolyacids and Lewis ion Ti: trifunctional catalysts for esterification to biodiesel. RSC Advances, 2017, 7, 42422-42429.	3.6	11
52	Highly efficient preparation of HMF from cellulose using temperature-responsive heteropolyacid catalysts in cascade reaction. Applied Catalysis B: Environmental, 2016, 196, 50-56.	20.2	125
53	Effect of carbon supports on RhRe bifunctional catalysts for selective hydrogenolysis of tetrahydropyran-2-methanol. Catalysis Science and Technology, 2016, 6, 7841-7851.	4.1	25
54	Fabrication of H ₃ PW ₁₂ O ₄₀ /agarose membrane for catalytic production of biodiesel through esterification and transesterification. RSC Advances, 2016, 6, 81794-81801.	3.6	11

#	Article	IF	CITATIONS
55	Designation of highly efficient catalysts for one pot conversion of glycerol to lactic acid. Scientific Reports, 2016, 6, 29840.	3.3	37
56	Lewis-acid-promoted catalytic cascade conversion of glycerol to lactic acid by polyoxometalates. Chemical Communications, 2016, 52, 3332-3335.	4.1	39
57	Design of a Highly Efficient Indium-Exchanged Heteropolytungstic Acid for Glycerol Esterification with Acetic Acid. Catalysis Surveys From Asia, 2016, 20, 82-90.	2.6	5
58	Temperature-Responsive Polyoxometalate Catalysts for DBT Desulfurization in One-Pot Oxidation Combined with Extraction. Catalysis Surveys From Asia, 2016, 20, 98-108.	2.6	9
59	Lysine functional heteropolyacid nanospheres as bifunctional acid–base catalysts for cascade conversion of glucose to levulinic acid. Fuel, 2016, 164, 262-266.	6.4	38
60	Single step conversion of cellulose to levulinic acid using temperature-responsive dodeca-aluminotungstic acid catalysts. Green Chemistry, 2016, 18, 742-752.	9.0	84
61	Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions. Scientific Reports, 2015, 5, 13764.	3.3	41
62	Hetropolyacid atalyzed Oxidation of Glycerol into Lactic Acid under Mild Baseâ€Free Conditions. ChemSusChem, 2015, 8, 4195-4201.	6.8	38
63	Fabrication of a Dendritic Heteropolyacid as Self‣eparated, Waterâ€Resistant Catalyst for Biodiesel Fuel Production. Energy Technology, 2015, 3, 871-877.	3.8	2
64	A highly active willow-derived sulfonated carbon material with macroporous structure for production of glucose. Cellulose, 2015, 22, 675-682.	4.9	16
65	Aerobic oxidation of starch catalyzed by isopolyoxovanadate Na4Co(H2O)6V10O28. Carbohydrate Polymers, 2015, 117, 673-680.	10.2	20
66	A heteropoly acid ionic crystal containing Cr as an active catalyst for dehydration of monosaccharides to produce 5-HMF in water. Catalysis Science and Technology, 2015, 5, 2496-2502.	4.1	48
67	Micellar Molybdovanadophosphates Producing High Content of Carboxylic Acids from Starch Using Hydrogen Peroxide. Catalysis Surveys From Asia, 2015, 19, 123-128.	2.6	1
68	Hydrogen peroxide as an oxidant in starch oxidation using molybdovanadophosphate for producing a high carboxylic content. RSC Advances, 2015, 5, 45725-45730.	3.6	8
69	Homogeneous borotungstic acid and heterogeneous micellar borotungstic acid catalysts for biodiesel production by esterification of free fatty acid. Biomass and Bioenergy, 2015, 76, 31-42.	5.7	18
70	Oxidative Desulfurization by Oxygen Using Amphiphilic Quaternary Ammonium Peroxovanadium Polyoxometalates. Catalysis Surveys From Asia, 2015, 19, 257-264.	2.6	15
71	Hydrolysis and alcoholysis of polysaccharides with high efficiency catalyzed by a (C ₁₆ TA) _x H _{6â^²x} P ₂ W ₁₈ O ₆₂ nanoassembly. RSC Advances, 2015, 5, 94155-94163.	3.6	14
72	Inorganic-bimolecular hybrids based on polyoxometalates: Intrinsic oxidase catalytic activity and their application to cancer immunoassay. Sensors and Actuators B: Chemical, 2015, 208, 497-504.	7.8	23

#	Article	IF	CITATIONS
73	Thermo-responsive polymer micelle-based nanoreactors for intelligent polyoxometalate catalysis. Catalysis Communications, 2015, 58, 164-168.	3.3	12
74	β-diketone-cobalt complexes inhibit DNA synthesis and induce S-phase arrest in rat C6 glioma cells. Oncology Letters, 2014, 7, 881-885.	1.8	10
75	Facile one-pot synthesis of mesoporous heteropolyacids-silica hybrid for catalytic wet hydrogen peroxide oxidation of phenol. Journal of Sol-Gel Science and Technology, 2014, 72, 663-667.	2.4	4
76	Mixed salts of silver and ammonium derivatives of molybdovanadophosphoric acid to improve the catalytic performance in the oxidation of starch. Catalysis Today, 2014, 234, 264-270.	4.4	13
77	A recyclable thermo-responsive catalytic system based on poly(N-isopropylacrylamide)-coated POM@SBA-15 nanospheres. Catalysis Communications, 2014, 51, 29-32.	3.3	13
78	Conversion of highly concentrated fructose into 5-hydroxymethylfurfural by acid–base bifunctional HPA nanocatalysts induced by choline chloride. RSC Advances, 2014, 4, 63055-63061.	3.6	48
79	Catalytic wet peroxide oxidation of phenol by [C ₁₆ H ₃₃ (CH ₃) ₃ N] ₄ H ₂ SiV _{2 catalyst. RSC Advances, 2014, 4, 7266-7274.}	2 <b sud>>W	<sub>10</s
80	Degradation of phenol by air and polyoxometalate nanofibers using a continuous mode. RSC Advances, 2014, 4, 25404-25409.	3.6	3
81	Effect of Cs content on CsxH5â^'xPMo10V2O40 properties and oxidative catalytic activity on starch oxidation by H2O2. RSC Advances, 2014, 4, 11232.	3.6	15
82	Polyoxometalates acid treatment for preparing starch nanoparticles. Carbohydrate Polymers, 2014, 112, 520-524.	10.2	11
83	Ultra-deep desulfurization via reactive adsorption on peroxophosphomolybdate/agarose hybrids. Chemosphere, 2014, 111, 631-637.	8.2	14
84	A water-tolerant C16H3PW11CrO39 catalyst for the efficient conversion of monosaccharides into 5-hydroxymethylfurfural in a micellar system. RSC Advances, 2013, 3, 23051.	3.6	27
85	A heteropolyacid-based ionic liquid as a thermoregulated and environmentally friendly catalyst in esterification reaction under microwave assistance. Catalysis Communications, 2013, 42, 125-128.	3.3	31
86	Oxidation of SCNâ [~] with air and micellar polyoxoperoxometalates. Chemosphere, 2013, 90, 318-322.	8.2	4
87	Polyoxometalate-based Ionic liquid as thermoregulated and environmentally friendly catalyst for starch oxidation. Applied Catalysis B: Environmental, 2013, 138-139, 161-166.	20.2	61
88	Fabrication of an inorganic–organic hybrid based on an iron-substituted polyoxotungstate as a peroxidase for colorimetric immunoassays of H2O2 and cancer cells. Journal of Materials Chemistry A, 2013, 1, 4699.	10.3	48
89	Water-tolerant heteropolyacid on magnetic nanoparticles as efficient catalysts for esterification of free fatty acid. RSC Advances, 2013, 3, 13748.	3.6	41
90	Acid–base bifunctional HPA nanocatalysts promoting heterogeneous transesterification and esterification reactions. Catalysis Science and Technology, 2013, 3, 2204.	4.1	50

#	Article	IF	CITATIONS
91	A micro reaction-controlled phase-transfer catalyst for oxidative desulfurization based on polyoxometalate modified silica. Applied Catalysis A: General, 2013, 467, 26-32.	4.3	69
92	Synthesis, crystal structure and antitumor activities of the dimeric silicotungstate containing cobalt: Na5K7[{β-SiCo2W10O36(OH)2(H2O)}2] ·39.5H2O. Inorganic Chemistry Communication, 2012, 25, 70-73.	3.9	11
93	One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis. RSC Advances, 2012, 2, 9058.	3.6	108
94	Polyoxometalates as peroxidase mimetics and their applications in H2O2 and glucose detection. Biosensors and Bioelectronics, 2012, 36, 18-21.	10.1	101
95	Study on antitumor activity of metal-based diketone complexes. Medicinal Chemistry Research, 2012, 21, 1071-1076.	2.4	9
96	A BrÃ,nsted–Lewis-surfactant-combined heteropolyacid as an environmental benign catalyst for esterification reaction. Catalysis Communications, 2012, 20, 103-106.	3.3	32
97	Assembly of folate-polyoxometalate hybrid spheres for colorimetric immunoassay like oxidase. Chemical Communications, 2011, 47, 2940.	4.1	60
98	One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a BrĄ̃,nsted–Lewis–surfactant-combined heteropolyacid catalyst. Chemical Communications, 2011, 47, 2176.	4.1	158
99	A micellar polyoxoperoxometalate [C16H33N(CH3)3]7[PW10Ti2O38(O2)2]: A highly efficient and stable catalyst for air oxidation of thiocyanate under room conditions. Catalysis Communications, 2011, 12, 384-387.	3.3	8
100	Fabrication of micellar heteropolyacid catalysts for clean production of monosaccharides from polysaccharides. Catalysis Communications, 2011, 12, 1483-1487.	3.3	18
101	Synthesis and Crystal Structure of a Rare Tetraâ€Yttriumâ€Supported Krebsâ€Type Tungstoantimonate. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2011, 637, 1178-1180.	1.2	6
102	Oxidative desulfurization of dibenzothiophene with dioxygen and reverse micellar peroxotitanium under mild conditions. Applied Catalysis B: Environmental, 2011, 106, 343-349.	20.2	67
103	Clean production of glucose from polysaccharides using a micellar heteropolyacid as a heterogeneous catalyst. Applied Catalysis B: Environmental, 2011, 107, 104-109.	20.2	70
104	Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass and Bioenergy, 2011, 35, 2659-2665.	5.7	168
105	High selective production of 5-hydroymethylfurfural from fructose by a solid heteropolyacid catalyst. Fuel, 2011, 90, 2289-2293.	6.4	139
106	Removal of organic dye by air and macroporous ZnO/MoO3/SiO2 hybrid under room conditions. Applied Surface Science, 2011, 257, 7913-7919.	6.1	46
107	Synthesis and biological evaluation of cyclopenten-1-one Mannich base oxovanadium compound. Medicinal Chemistry Research, 2010, 19, 1162-1173.	2.4	6
108	Hydrolysis of cellulose by the heteropoly acid H3PW12O40. Cellulose, 2010, 17, 587-594.	4.9	195

#	Article	IF	CITATIONS
109	Degradation of Rhodamine B and Safraninâ€T by MoO ₃ :CeO ₂ Nanofibers and Air Using a Continuous Mode. Clean - Soil, Air, Water, 2010, 38, 268-274.	1.1	34
110	Catalytic wet air oxidation of phenol with air and micellar molybdovanadophosphoric polyoxometalates under room condition. Applied Catalysis B: Environmental, 2010, 97, 127-134.	20.2	60
111	Degradation of phenol accumulated in a micellar molybdovanadophosphate nanoreactor by air at ambient temperature and atmospheric pressure. Dalton Transactions, 2010, 39, 5087.	3.3	11
112	Zn _{1.2} H _{0.6} PW ₁₂ O ₄₀ Nanotubes with Double Acid Sites as Heterogeneous Catalysts for the Production of Biodiesel from Waste Cooking Oil. ChemSusChem, 2009, 2, 177-183.	6.8	83
113	Fabrication of Cs2.5H0.5PW12O40 three-dimensional ordered film by colloidal crystal template. Journal of Solid State Chemistry, 2009, 182, 1661-1665.	2.9	5
114	Three-dimensional films of photoluminescent polyoxometalates fabricated by a colloidal crystal template. Thin Solid Films, 2009, 518, 154-159.	1.8	5
115	Biodiesel production from Eruca Sativa Gars vegetable oil and motor, emissions properties. Renewable Energy, 2009, 34, 1871-1876.	8.9	104
116	Catalytic wet air oxidation of dye pollutants by polyoxomolybdate nanotubes under room condition. Applied Catalysis B: Environmental, 2009, 86, 182-189.	20.2	79
117	Fast catalytic degradation of organic dye with air and MoO3:Ce nanofibers under room condition. Applied Catalysis B: Environmental, 2009, 92, 333-340.	20.2	104
118	Heteropolyacid Nanoreactor with Double Acid Sites as a Highly Efficient and Reusable Catalyst for the Transesterification of Waste Cooking Oil. Energy & Fuels, 2009, 23, 4640-4646.	5.1	42
119	Synthesis and biological evaluation of decavanadate Na4Co(H2O)6V10O28·18H2O. Biomedicine and Pharmacotherapy, 2009, 63, 51-55.	5.6	46
120	Degradation of dye on polyoxotungstate nanotube under molecular oxygen. Dyes and Pigments, 2008, 76, 113-117.	3.7	34
121	Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid. Biotechnology and Bioengineering, 2008, 101, 93-100.	3.3	133
122	Synthesis and biological activity of triorganogermanium substituted heteropolytungstates. Polyhedron, 2008, 27, 1150-1154.	2.2	8
123	Synthesis and characterization of polyoxometalates loaded starch nanocomplex and its antitumoral activity. European Journal of Medicinal Chemistry, 2008, 43, 1911-1917.	5.5	40
124	Synthesis and structure of dititanium-containing 10-tungstogermanate [{γ-GeTi2W10O36(OH)2}2(μ-O)2]8â^'. Inorganic Chemistry Communication, 2008, 11, 835-836.	3.9	16
125	Polyoxometalate-based Colloidal Crystal Thin Film. Chemistry Letters, 2007, 36, 260-261.	1.3	2
126	Transesterification of Vegetable Oil to Biodiesel using a Heteropolyacid Solid Catalyst. Advanced Synthesis and Catalysis, 2007, 349, 1057-1065.	4.3	164

#	Article	IF	CITATIONS
127	Syntheses, properties and biological activity of organogermanium substituted heteropolytungstates. Inorganic Chemistry Communication, 2007, 10, 216-219.	3.9	7
128	W doped vanadium oxide nanotubes: Synthesis and characterization. Materials Letters, 2007, 61, 1328-1332.	2.6	23
129	Dendritic and tubular tungsten oxide by surface sol–gel mineralisation of cellulosic substance. Materials Letters, 2007, 61, 3939-3941.	2.6	14
130	Polyoxotungstates containing uranyl group: Germanotungstates with Keggin sandwich structure. Inorganic Chemistry Communication, 2006, 9, 1331-1334.	3.9	25
131	A novel organically templated three-dimensional open framework vanadium tellurite: (NH3CH2CH2NH3)2V2Te6O18. Journal of Solid State Chemistry, 2005, 178, 1825-1829.	2.9	12
132	New liposome-encapsulated-polyoxometalates: synthesis and antitumoral activity. Journal of Inorganic Biochemistry, 2005, 99, 452-457.	3.5	75
133	Polyoxometalates supporting cyclopendienylzirconium : a new kind of olefin polymerization catalyst. Inorganic Chemistry Communication, 2005, 8, 70-71.	3.9	15
134	Synthesis, Characterization, and Antitumoral Activity of Polyoxometalate Loaded Starch Nanocomplexes. Journal of Nanoscience and Nanotechnology, 2005, 5, 905-908.	0.9	3
135	Preparation, characterization and in vitro antitumoral activity of a nanosize liposome complex encapsulated polyoxotungstate K6H2[CoW11TiO40]. Transition Metal Chemistry, 2004, 29, 96-99.	1.4	19
136	Synthesis and antitumor activity of cyclopentadienyltitanium substituted polyoxotungstate [CoW11O39(CpTi)]7â^' (Cp=η5·C5H5). Journal of Inorganic Biochemistry, 2003, 94, 279-284.	3.5	82
137	New polyoxometalate/starch nanomaterial: synthesis, characterization and antitumoral activity. Dalton Transactions, 2003, , 957-960.	3.3	132
138	Synthesis and Characterization of \hat{l}^2 -Diketonato Titanium Derivatives of Polyoxometalates. Synthetic Communications, 2003, 33, 3919-3927.	2.1	0
139	SYNTHESIS OF ISOMERS OF ORGANOTIN SUBSTITUTED POLYOXOTUNGSTATES AND COMPARISON OF THE ANTITUMOR ACTIVITY OF ISOMERS. Main Group Metal Chemistry, 2002, 25, .	1.6	26
140	Synthesis and crystal structure of the dimeric, Ti–O–Ti bridged hydrid form polyoxoanion [α-1,2-PW 10 Ti 2 O 39] 2 10â^'. Inorganic Chemistry Communication, 2002, 5, 796-799.	3.9	18
141	Synthesis, Properties and Biological Activity of Organotitanium Substituted Heteropolytungstates. Metal-Based Drugs, 2001, 8, 179-182.	3.8	8
142	Synthesis, characterization and in vitro antitumor activity of diorganometallo complexes Î ³ -Keggin anions. Inorganic Chemistry Communication, 2001, 4, 372-374.	3.9	31