Nanda Gunawardhana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/166038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Design and construction of a low cost air purifier for killing harmful airborne microorganisms using a combination of a strong multi-directional electric-field and an ultra violet light. HardwareX, 2022, 11, e00279.	2.2	3
2	Online Delivery and Assessment during COVID-19: Safeguarding Academic Integrity. Education Sciences, 2020, 10, 301.	2.6	123
3	Online Delivery of Teaching and Laboratory Practices: Continuity of University Programmes during COVID-19 Pandemic. Education Sciences, 2020, 10, 291.	2.6	170
4	Gold functionalized MoO3 nano flakes for gas sensing applications. Sensors and Actuators B: Chemical, 2018, 269, 331-339.	7.8	62
5	Fabrication of Hollow Co ₃ O ₄ Nanospheres and Their Nanocomposites of CNT and rGO as Highâ€Performance Anodes for Lithiumâ€lon Batteries. ChemistrySelect, 2018, 3, 5502-5511.	1.5	7
6	Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery. Applied Surface Science, 2015, 329, 206-211.	6.1	30
7	Fabrication of ZnO Hollow Nanospheres and Their Electrochemical Reactivity in Lithium Ion Batteries (LIBs). Journal of Nanoelectronics and Optoelectronics, 2015, 10, 135-139.	0.5	1
8	Synthesis of mesoporous birnessite-MnO2 composite as a cathode electrode for lithium battery. Electrochimica Acta, 2014, 116, 188-193.	5.2	35
9	Micelle templated NiO hollow nanospheres as anode materials in lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 7337-7344.	10.3	80
10	Development of a novel and safer energy storage system using a graphite cathode and Nb2O5 anode. Journal of Power Sources, 2013, 236, 145-150.	7.8	42
11	α-Fe2O3 and Fe3O4 hollow nanospheres as high-capacity anode materials for rechargeable Li-ion batteries. Ionics, 2013, 19, 25-31.	2.4	19
12	V ₂ O ₅ Hollow Nanospheres: A Lithium Intercalation Host with Good Rate Capability and Capacity Retention. Journal of the Electrochemical Society, 2012, 159, A618-A621.	2.9	50
13	CeO2 Hollow Nanospheres as Anode Material for Lithium Ion Batteries. Chemistry Letters, 2012, 41, 386-388.	1.3	22
14	α-MoO3 Hollow Nanospheres as an Anode Material for Li-Ion Batteries. Bulletin of the Chemical Society of Japan, 2012, 85, 642-646.	3.2	21
15	La2O3 hollow nanospheres for high performance lithium-ion rechargeable batteries. Chemical Communications, 2012, 48, 3200.	4.1	41
16	WO3 hollow nanospheres for high-lithium storage capacity and good cyclability. Nano Energy, 2012, 1, 503-508.	16.0	88
17	Nb2O5 hollow nanospheres as anode material for enhanced performance in lithium ion batteries. Materials Research Bulletin, 2012, 47, 2161-2164.	5.2	75
18	Novel LaBO3 hollow nanospheres of size 34±2nm templated by polymeric micelles. Journal of Colloid and Interface Science, 2012, 370, 51-57.	9.4	18

Nanda Gunawardhana

#	Article	IF	CITATIONS
19	Synthesis of magnetic α-Fe2O3 and Fe3O4 hollow nanospheres for sustained release of ibuprofen. Materials Letters, 2012, 73, 4-7.	2.6	22
20	The study of electrochemical properties and lithium deposition of graphite at low temperature. Journal of Power Sources, 2012, 199, 293-299.	7.8	54
21	Performance of a graphite (KS-6)/MoO3 energy storing system. Journal of Power Sources, 2012, 203, 257-261.	7.8	26
22	Synthesis, characterization and application for lithium-ion rechargeable batteries of hollow silica nanospheres. Journal of Materials Chemistry, 2011, 21, 13881.	6.7	127
23	Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries. Nanoscale, 2011, 3, 4768.	5.6	45
24	Novel titania hollow nanospheres of size 28 \hat{A} ± 1 nm using soft-templates and their application for lithium-ion rechargeable batteries. Chemical Communications, 2011, 47, 6921.	4.1	66
25	Suppression of Li deposition on surface of graphite using carbon coating by thermal vapor deposition process. Journal of Power Sources, 2011, 196, 9820-9824.	7.8	31
26	Suppression of lithium deposition at sub-zero temperatures on graphite by surface modification. Electrochemistry Communications, 2011, 13, 1116-1118.	4.7	30
27	Reductively Induced Catalytic DNA Cleavage of Water Soluble RhIII-Br8TMPyP. Catalysis Letters, 2011, 141, 1803-1807.	2.6	3
28	A convenient and eco-friendly way to synthesize Pt(II) and Pd(II) porphyrins in ionic liquids by microwave activation. Environmental Chemistry Letters, 2011, 9, 473-477.	16.2	4
29	Constructing a novel and safer energy storing system using a graphite cathode and a MoO3 anode. Journal of Power Sources, 2011, 196, 7886-7890.	7.8	44
30	X-ray crystal structure of the trifluoroacetylcobalt complex CF3COCo(CO)3(PPh3) – Implications for the relationship between structure and reactivity toward migratory insertion of carbon monoxide in cobalt alkyl complexes. Inorganica Chimica Acta, 2009, 362, 113-116.	2.4	4
31	Reductively induced homolytic carbon–carbon bond cleavage in Co(CO)3(PPh3)(COCF3). Journal of Organometallic Chemistry, 2007, 692, 3231-3235.	1.8	3