Gabriella CsÃ-k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1659836/publications.pdf

Version: 2024-02-01

28	427	11	20
papers	citations	h-index	g-index
30	30	30	591 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	In vitro degradation and antitumor activity of oxime bond-linked daunorubicin–GnRH-III bioconjugates and DNA-binding properties of daunorubicin–amino acid metabolites. Amino Acids, 2011, 41, 469-483.	2.7	66
2	Binding of Cationic Porphyrin to Isolated and Encapsidated Viral DNA Analyzed by Comprehensive Spectroscopic Methodsâ€. Biochemistry, 2004, 43, 9151-9159.	2.5	41
3	Medium-sized peptides as built in carriers for biologically active compounds. Medicinal Research Reviews, 2005, 25, 679-736.	10.5	41
4	Syntheses and DNA binding of new cationic porphyrin–tetrapeptide conjugates. Biophysical Chemistry, 2011, 155, 36-44.	2.8	33
5	Comparison of the efficiency and the specificity of DNA-bound and free cationic porphyrin in photodynamic virus inactivation. Journal of Photochemistry and Photobiology B: Biology, 2008, 90, 105-112.	3.8	29
6	Forced phage uncorking: viral DNA ejection triggered by a mechanically sensitive switch. Nanoscale, 2018, 10, 1898-1904.	5.6	25
7	A New Daunomycin–Peptide Conjugate: Synthesis, Characterization and the Effect on the Protein Expression Profile of HL-60 Cells ⟨i⟩in Vitro⟨/i⟩. Bioconjugate Chemistry, 2011, 22, 2154-2165.	3 . 6	24
8	Single-particle virology. Biophysical Reviews, 2020, 12, 1141-1154.	3. 2	16
9	Role of structure-proteins in the porphyrin–DNA interaction. Journal of Photochemistry and Photobiology B: Biology, 2009, 96, 207-215.	3.8	15
10	Interaction of photosensitizers with liposomes containing unsaturated lipid. Chemistry and Physics of Lipids, 2007, 145, 63-71.	3.2	13
11	Temperature-Dependent Nanomechanics and Topography of Bacteriophage T7. Journal of Virology, 2018, 92, .	3.4	13
12	Interaction of hydro- or lipophilic phthalocyanines with cells of different metastatic potential. Biochemical Pharmacology, 1996, 51, 585-590.	4.4	12
13	Interaction of tetraphenyl-porphyrin derivatives with DPPC-liposomes: an EPR study. Journal of Photochemistry and Photobiology B: Biology, 2005, 79, 83-88.	3.8	11
14	Stepwise reversible nanomechanical buckling in a viral capsid. Nanoscale, 2017, 9, 1136-1143.	5.6	11
15	Comparison of Binding Ability and Location of Two Mesoporphyrin Derivatives in Liposomes Explored with Conventional and Site-Selective Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2012, 116, 9644-9652.	2.6	9
16	Location of Mesoporphyrin in Liposomes Determined by Site-Selective Fluorescence Spectroscopy. Journal of Physical Chemistry B, 2009, 113, 7716-7724.	2.6	8
17	Oligo- and polypeptide conjugates of cationic porphyrins: binding, cellular uptake, and cellular localization. Amino Acids, 2017, 49, 1263-1276.	2.7	8
18	Suitability of GnRH Receptors for Targeted Photodynamic Therapy in Head and Neck Cancers. International Journal of Molecular Sciences, 2019, 20, 5027.	4.1	8

#	Article	lF	CITATIONS
19	Binding of new cationic porphyrin–tetrapeptide conjugates to nucleoprotein complexes. Biophysical Chemistry, 2013, 177-178, 14-23.	2.8	7
20	Comparison of light-induced formation of reactive oxygen species and the membrane destruction of two mesoporphyrin derivatives in liposomes. Scientific Reports, 2019, 9, 11312.	3.3	7
21	Biophysical and biological properties of newly synthesized dioxinocoumarin derivatives. Journal of Photochemistry and Photobiology B: Biology, 1994, 24, 129-139.	3.8	6
22	Comparison of the Efficacy of Two Novel Antitubercular Agents in Free and Liposome-Encapsulated Formulations. International Journal of Molecular Sciences, 2021, 22, 2457.	4.1	6
23	Dark and photoreactivity of 4′-aminomethyl-4,5′,8-trimethylpsoralen with T7 phage. Journal of Photochemistry and Photobiology B: Biology, 1990, 5, 167-178.	3.8	5
24	Biophysical and biological properties of newly synthesized dioxinocoumarin derivatives Journal of Photochemistry and Photobiology B: Biology, 1993, 19, 119-124.	3.8	5
25	Photochemical and Structural Studies on Cyclic Peptide Models. Molecules, 2018, 23, 2196.	3.8	5
26	Single-Molecule Mechanics in Ligand Concentration Gradient. Micromachines, 2020, 11, 212.	2.9	2
27	Peptide/protein conjugates of photosensitizers. Amino Acids, Peptides and Proteins, 0, , 100-145.	0.7	1
28	Forced Bacteriophage Uncorking: Viral DNA Ejection Triggered by a Sensitive Mechanical Switch. Biophysical Journal, 2017, 112, 216a.	0.5	O